Do you want to publish a course? Click here

Do About Half the Top Quarks at FNAL Come From Gluino Decays?

54   0   0.0 ( 0 )
 Added by Steve Mrenna
 Publication date 1996
  fields
and research's language is English
 Authors G.L. Kane




Ask ChatGPT about the research

We argue that it is possible to make a consistent picture of FNAL data including the production and decay of gluinos and squarks. The additional cross section is several pb, about the size of that for Standard Model (SM) top quark pair production. If the stop squark mass is small enough, about half of the top quarks decay to stop squarks, and the loss of SM top quark pair production rate is compensated by the supersymmetric processes. This behavior is consistent with the reported top quark decay rates in various modes and other aspects of the data, and suggests several other possible decay signatures. This picture can be tested easily with more data, perhaps even with the data in hand, and demonstrates the potential power of a hadron collider to determine supersymmetric parameters. It also has implications for the top mass measurement and the interpretation of the LEP $R_b$ excess.



rate research

Read More

56 - E.E.Boos 2000
A review of results on top quark physics expected at the Photon Linear Colliders is presented.
151 - K. Hidaka 2012
We study the effects of squark generation mixing on squark and gluino production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM) with focus on the mixing between second and third generation squarks. Taking into account the constraints from B-physics experiments we show that various regions in parameter space exist where decays of squarks and/or gluinos into quark flavour violating (QFV) final states can have large branching ratios. Here we consider both fermionic and bosonic decays of squarks. Rates of the corresponding QFV signals, e.g. pp -> t t bar{c} bar{c} missing-E_T X, can be significant at LHC(14 TeV). We find that the inclusion of flavour mixing effects can be important for the search of squarks and gluinos and the determination of the underlying model parameters of the MSSM at LHC.
Despite the spectacular discovery of an astrophysical neutrino flux by IceCube in 2013, its origin remains a mystery. Whatever its sources, we expect the neutrino flux to be accompanied by a comparable gamma-ray flux. These photons should be degraded in energy by electromagnetic cascades and contribute to the diffuse GeV-TeV flux precisely measured by the Fermi-LAT. Population studies have also permitted to identify the main classes of contributors to this flux, which at the same time have not been associated with major neutrino sources in cross-correlation studies. These considerations allow one to set constraints on the origin and spectrum of the IceCube flux, in particular its low-energy part. We find that, even accounting for known systematic errors, the Fermi-LAT data exclude to at least 95% C.L. any extragalactic transparent source class, irrespective of its redshift evolution, if the neutrino spectrum extends to the TeV scale or below. If the neutrino spectrum has an abrupt cutoff at $sim10$ TeV, barely compatible with current observations, the tension can be reduced, but this way out requires a significant modification to the current understanding of the origin of the diffuse extragalactic gamma-ray flux at GeV energies. In contrast, these considerations do not apply if a sizable fraction of IceCube data originates within the Galactic halo (a scenario however typically in tension with other constraints) or from a yet unidentified class of opaque extragalactic emitters, which do not let the high-energy gamma rays get out.
159 - Karol Krizka , Abhishek Kumar , 2012
A very light scalar top (stop) superpartner is motivated by naturalness and electroweak baryogenesis. When the mass of the stop is less than the sum of the masses of the top quark and the lightest neutralino superpartner, as well as the of the masses of the lightest chargino and the bottom quark, the dominant decay channels of the stop will be three-body, four-body, or flavour violating. In this work, we investigate the direct and indirect constraints on a light stop, we compute the relative decay branching fractions to these channels, and we study the sensitivity of existing LHC searches to each of them.
60 - S. Mrenna 1995
We study the possibility of discovering or excluding a light top squark (stop) based on top quark decays in the t-tbar events produced at the Fermilab Tevatron. In particular, we consider the Minimal Supersymmetric Standard Model with the sparticle spectrum m_{chi^+_1}+m_b, M_W+m_{chi^0_1}+m_b > m_{stop} > m_{chi^0_1}+m_c, where chi^0_1 is the lightest neutralino and chi^+_1 is the lightest chargino, so that t -> stop chi^0_1 and stop -> c chi^0_1. All other sparticle masses are assumed to be heavier than m_t. Such a spectrum seeks to explain the experimental values of alpha_s(M_Z^2), R_b and A_{LR} obtained from LEP/SLC data. We find that the prospect to observe a light stop via this channel at the Tevatron is very promising.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا