No Arabic abstract
We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory.
Recent data from cosmic ray experiments may be explained by a new GeV scale of physics. In addition the fine-tuning of supersymmetric models may be alleviated by new O(GeV) states into which the Higgs boson could decay. The presence of these new, light states can affect early universe cosmology. We explore the consequences of a light (~ GeV) scalar on the electroweak phase transition. We find that trilinear interactions between the light state and the Higgs can allow a first order electroweak phase transition and a Higgs mass consistent with experimental bounds, which may allow electroweak baryogenesis to explain the cosmological baryon asymmetry. We show, within the context of a specific supersymmetric model, how the physics responsible for the first order phase transition may also be responsible for the recent cosmic ray excesses of PAMELA, FERMI etc. We consider the production of gravity waves from this transition and the possible detectability at LISA and BBO.
We study the correlation between the value of the triple Higgs coupling and the nature of the electroweak phase transition. We use an effective potential approach, including higher order, non-renormalizable terms coming from integrating out new physics. We show that if only the dimension six operators are considered, large positive deviations of the triple Higgs coupling from its Standard Model (SM) value are predicted in the regions of parameter space consistent with a strong first order electroweak phase transition (SFOEPT). We also show that at higher orders sizable and negative deviations of the triple Higgs coupling may be obtained, and the sign of the corrections tends to be correlated with the order of the phase transition. We also consider a singlet extension of the SM, which allows us to establish the connection with the effective field theory (EFT) approach and analyze the limits of its validity. Furthermore, we study how to probe the triple Higgs coupling from the double Higgs production at the LHC. We show that selective cuts in the invariant mass of the two Higgs bosons should be used, to maximize the sensitivity for values of the triple Higgs coupling significantly different from the Standard Model one.
Light new physics weakly coupled to the Higgs can induce a strong first-order electroweak phase transition (EWPT). Here, we argue that scenarios in which the EWPT is driven first-order by a light scalar with mass between $sim 10$ GeV - $m_h/2$ and small mixing with the Higgs will be conclusively probed by the high-luminosity LHC and future Higgs factories. Our arguments are based on analytic and numerical studies of the finite-temperature effective potential and provide a well-motivated target for exotic Higgs decay searches at the LHC and future lepton colliders.
This work investigates a simple, representative extension of the Standard Model with a real scalar singlet and spontaneous $Z_2$ breaking, which allows for a strongly first-order phase transition, as required by electroweak baryogenesis. We perform analytical and numerical calculations that systematically include one-loop thermal effects, Coleman-Weinberg corrections, and daisy resummation, as well as evaluation of bubble nucleation. We study the rich thermal history and identify the conditions for a strongly first-order electroweak phase transition with nearly degenerate extrema at zero temperature. This requires a light scalar with mass below 50 GeV. Exotic Higgs decays, as well as Higgs coupling precision measurements at the LHC and future collider facilities, will test this model. Additional information may be obtained from future collider constraints on the Higgs self-coupling. Gravitational-wave signals are typically too low to be probed by future gravitational wave experiments.
To realize first-order electroweak phase transition, it is necessary to generate a barrier in the thermal Higgs potential, which is usually triggered by scalar degree of freedom. We instead investigate phase transition patterns in pure fermion extensions of the standard model, and find that additional fermions with mass hierarchy and mixing could develop such barrier and realize strongly first-order phase transition in such models. In the Higgs potential with polynomial parametrization, the barrier can be generated in the following two patterns: (I) positive quadratic term, negative cubic term and positive quartic term or (II) positive quadratic term, negative quartic term and positive higher dimensional term, such as dimensional 6 operator.