No Arabic abstract
We derive Feynman rules for the interactions of a single gravitino with (s)quarks and gluons/gluinos from an effective supergravity Lagrangian in non-derivative form and use them to calculate the hadroproduction cross sections and decay widths of single gravitinos. We confirm the results obtained previously with a derivative Lagrangian as well as those obtained with the non-derivative Lagrangian in the high-energy limit and elaborate on the connection between gauge independence and the presence of quartic vertices. We perform extensive numerical studies of branching ratios, total cross sections, and transverse-momentum spectra at the Tevatron and the LHC. From the latest CDF monojet cross section limit, we derive a new and robust exclusion contour in the gravitino-squark/gluino mass plane, implying that gravitinos with masses below $2cdot10^{-5}$ to $1cdot10^{-5}$ eV are excluded for squark/gluino-masses below 200 and 500 GeV, respectively. These limits are complementary to the one obtained by the CDF collaboration, $1.1cdot 10^{-5}$ eV, under the assumption of infinitely heavy squarks and gluinos. For the LHC, we conclude that SUSY scenarios with light gravitinos will lead to a striking monojet signal very quickly after its startup.
In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as top taggers. To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.
Uncertainties of the MSSM predictions are due to an unknown SUSY breaking mechanism. To reduce these uncertainties, one usually imposes constraints on the MSSM parameter space. Recently, two new constraints became available, both from astrophysics: WMAP precise measurement of the amount of the Dark Matter in the Universe and EGRET data on an excess in diffuse gamma ray flux. Being interpreted as a manifestation of supersymmetry these data lead to severe constraints on parameter space and single out a very restricted area. The key feature of this area is the splitting of light gauginos from heavy squarks and sleptons. We study the phenomenological properties of this scenario, in particular, the cross-sections of superparticle production, their decay patterns and signatures for observation at hadron colliders, Tevatron and LHC. We found that weakly interacting particles in this area are very light so that the cross-sections may reach fractions of a pb with jets and/or leptons as final states accompanied by missing energy taken away by light neutralino with a mass around 100 GeV.
The present talk is based on the assumption that New Bound States (NBSs) of top-anti-top quarks (named T-balls) exist in the Standard Model (SM): a) there exists the scalar 1S - bound state of 6t+6bar t - the bound state of 6 top-quarks with their 6 anti-top-quarks; b) the forces which bind these top-quarks are very strong and almost completely compensate the mass of the 12 top-anti-top-quarks forming this bound state; c) such strong forces are produced by the interactions of top-quarks via the virtual exchange of the scalar Higgs bosons having the large value of the top-quark Yukawa coupling constant g_tsimeq 1. Theory also predicts the existence of the NBS 6t + 5bar t, which is a color triplet and a fermion similar to the t-quark of the fourth generation. We have also considered b-replaced NBSs: n_b b + (6t + 6bar t - n_b t) and n_b b + (6t + 5bar t - n_b t), etc. We have estimated the masses of the lightest b-replaced NBS: M_{NBS}simeq (300 - 400) GeV, and discussed the larger masses of the NBSs. We have developed a theory of the scalar T-balls condensate, and predicted the existence of the three SM phases, calculating the top-quark Yukawa coupling constant at the border of two phases (with T-balls condensate and without it) equal to: g_t approx 1. The searching for the Higgs boson H and T-balls at the Tevatron and LHC is discussed.
We extend our previous analysis on inclusive heavy quarkonia hadroproduction to the whole Upsilon(nS) (n=1,2,3) resonance family. We use a Monte Carlo framework with the colour-octet mechanism implemented in the PYTHIA event generator. We include in our study higher order QCD effects such as initial-state emission of gluons and Altarelli-Parisi evolution of final-state gluons. We extract some NRQCD colour-octet matrix elements relevant for Upsilon(nS) (n=1,2,3) hadroproduction from CDF data at the Fermilab Tevatron. Then we extrapolate to LHC energies to predict prompt bottomonia production rates. Finally, we examine the prospect to probe the gluon density in protons from heavy quarkonia inclusive hadroproduction at high transverse momentum and its feasibility in LHC general-purpose experiments.
The present paper is based on the assumption that heavy quarks bound states exist in the Standard Model (SM). Considering New Bound States (NBS) of top-anti-top quarks (named T-balls) we have shown that: 1) there exists the scalar 1S--bound state of $6t+6bar t$; 2) the forces which bind the top-quarks are very strong and almost completely compensate the mass of the twelve top-anti-top-quarks in the scalar NBS; 3) such strong forces are produced by the Higgs-top-quarks interaction with a large value of the top-quark Yukawa coupling constant $g_tsimeq 1$. Theory also predicts the existence of the NBS $6t + 5bar t$, which is a color triplet and a fermion similar to the $t$-quark of the fourth generation. We have also considered the b-quark-replaced NBS, estimated the masses of the lightest fermionic NBS: $M_{NBS}gtrsim 300$ GeV, and discussed the larger masses of T-balls. We have developed a theory of the scalar T-balls condensate and predicted the existence of three SM phases. Searching for heavy quark bound states at the Tevatron and LHC is discussed. We have constructed the possible form-factors of T-balls, and estimated the charge multiplicity coming from the T-balls decays.