Do you want to publish a course? Click here

Real time statistical field theory

238   0   0.0 ( 0 )
 Added by Todd Fugleberg
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We have written a {it Mathematica} program that calculates the integrand corresponding to any amplitude in the closed-time-path formulation of real time statistical field theory. The program is designed so that it can be used by someone with no previous experience with {it Mathematica}. It performs the contractions over the tensor indices that appear in real time statistical field theory and gives the result in the 1-2, Keldysh or RA basis. We have used the program to calculate the ward identity for the QED 3-point function, the QED 4-point function for two photons and two fermions, and the QED 5-point function for three photons and two fermions. In real time statistical field theory, there are seven 3-point functions, 15 4-point functions and 31 5-point functions. We produce a table that gives the results for all of these functions. In addition, we give a simple general expression for the KMS conditions between $n$-point green functions and vertex functions, in both the Keldysh and RA bases



rate research

Read More

178 - S. Floerchinger 2010
We develop a reformulation of the functional integral for bosons in terms of bilocal fields. Correlation functions correspond to quantum probabilities instead of probability amplitudes. Discrete and continuous global symmetries can be treated similar to the usual formalism. Situations where the formalism can be interpreted in terms of a statistical field theory in Minkowski space are characterized by violations of unitarity at very large momentum scales. Renormalization group equations suggest that unitarity can be essentially restored by strong fluctuation effects.
288 - Sebastian Scheffler 2008
We investigate ultraviolet fixed points in the real-time evolution of non-Abelian gauge fields. Classical-statistical lattice simulations reveal equal-time correlation functions with a spectral index 3/2. Analytical understanding of this result is achieved by employing a 2PI- loop expansion for the quantum theory.
This review represents a detailed and comprehensive discussion of the Thermal Field Theory (TFT) concepts and key results in Yukawa-type theories. We start with a general pedagogical introduction into the TFT in the imaginary- and real-time formulation. As phenomenologically relevant implications, we present a compendium of thermal decay rates for several typical reactions calculated within the framework of the real-time formalism and compared to the imaginary-time results found in the literature. Processes considered here are those of a neutral (pseudo)scalar decaying into two distinct (pseudo)scalars or into a fermion-antifermion pair. These processes are extended from earlier works to include chemical potentials and distinct species in the final state. In addition, a (pseudo)scalar emission off a fermion line is also discussed. These results demonstrate the importance of thermal effects in particle decay observables relevant in many phenomenological applications in systems at high temperatures and densities.
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
325 - F. Gelis , N. Tanji 2013
In this paper, we show how classical statistical field theory techniques can be used to efficiently perform the numerical evaluation of the non-perturbative Schwinger mechanism of particle production by quantum tunneling. In some approximation, we also consider the back-reaction of the produced particles on the external field, as well as the self-interactions of the produced particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا