Do you want to publish a course? Click here

NLO QCD corrections to W boson production with a massive b-quark jet pair at the Fermilab Tevatron p-pbar collider

95   0   0.0 ( 0 )
 Added by Laura Reina
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the Next-to-Leading Order (NLO) QCD corrections to W-b-bbar production including full bottom-quark mass effects. We study the impact of NLO QCD corrections on the total cross section and invariant mass distribution of the bottom-quark jet pair at the Fermilab Tevatron p-pbar collider. We perform a detailed comparison with a calculation that considers massless bottom quarks. We find that neglecting bottom-quark mass effects overestimates the NLO total cross-section for W-b-bbar production at the Tevatron by about 8% independent of the choice of renormalization and factorization scale.



rate research

Read More

We calculate the Next-to-Leading Order (NLO) QCD corrections to Z b anti-b production in hadronic collisions including full bottom-quark mass effects. We present results for the total cross section and the invariant mass distribution of the bottom-quark jet pair at the Fermilab Tevatron p anti-p collider. We perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. We find that neglecting bottom-quark mass effects overestimates the total NLO QCD cross section for Z b anti-b production at the Tevatron by about 7%, independent of the choice of the renormalization and factorization scales. Moreover, bottom-quark mass effects can impact the shape of the bottom-quark pair invariant mass distribution, in particular in the low invariant mass region.
We present total and differential cross sections for W b anti-b and Z b anti-b production at the CERN Large Hadron Collider with a center-of-mass energy of 14 TeV, including Next-to-Leading Order (NLO) QCD corrections and full bottom-quark mass effects. We also provide numerical results obtained with a center-of-mass energy of 10 TeV. We study the scale uncertainty of the total cross sections due to the residual renormalization- and factorization-scale dependence of the truncated perturbative series. While in the case of Z b anti-b production the scale uncertainty of the total cross section is reduced by NLO QCD corrections, the W b anti-b production process at NLO in QCD still suffers from large scale uncertainties, in particular in the inclusive case. We also perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. The effects of a non-zero bottom-quark mass (m_b) cannot be neglected in phase-space regions where the relevant kinematic observable, such as the transverse momentum of the bottom quarks or the invariant mass of the bottom-quark pair, are of the order of m_b. The effects on the total production cross sections are usually smaller than the residual scale uncertainty at NLO in QCD.
We compute the QCD corrections to the production of a top quark pair in association with one hard jet at the Tevatron and the LHC, using the method of generalized D-dimensional unitarity. Top quark decays are included at leading order in perturbative QCD. We present kinematic distributions of top quark decay products in lepton plus jets and dilepton final states at the Tevatron and the LHC, using realistic selection cuts. We confirm a strong reduction of the top quark forward-backward asymmetry for the process ttbar+jet at the Tevatron at next-to-leading order, first observed by Dittmaier, Uwer and Weinzierl. We argue that there is a natural way to understand this reduction and that it does not imply a breakdown of the perturbative expansion for the asymmetry.
We present the next-to-leading order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of Sector Decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high $p_{t,mathrm{H}}$ region, where the top-quark loop is resolved. We find that the next-to-leading order QCD corrections are large but that the ratio of the next-to-leading order to leading order result is similar to that obtained by computing in the limit of large top-quark mass.
We present NLO QCD results for W/Z gauge boson production with bottom quark pairs at the Tevatron including full bottom-quark mass effects. We study the impact of QCD corrections on both total cross-section and invariant mass distribution of the bottom-quark pair. Including NLO QCD corrections greatly reduces the dependence of the tree-level cross-section on the renormalization and factorization scales. We also compare our calculation to a calculation that considers massless bottom quarks and find that the bottom-quark mass effects amount to about 8-10% of the total NLO QCD cross-section and can impact the shape of the bottom-quark pair invariant mass distribution, in particular in the low invariant mass region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا