Do you want to publish a course? Click here

W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider

206   0   0.0 ( 0 )
 Added by Doreen Wackeroth
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We present total and differential cross sections for W b anti-b and Z b anti-b production at the CERN Large Hadron Collider with a center-of-mass energy of 14 TeV, including Next-to-Leading Order (NLO) QCD corrections and full bottom-quark mass effects. We also provide numerical results obtained with a center-of-mass energy of 10 TeV. We study the scale uncertainty of the total cross sections due to the residual renormalization- and factorization-scale dependence of the truncated perturbative series. While in the case of Z b anti-b production the scale uncertainty of the total cross section is reduced by NLO QCD corrections, the W b anti-b production process at NLO in QCD still suffers from large scale uncertainties, in particular in the inclusive case. We also perform a detailed comparison with a calculation that considers massless bottom quarks, as implemented in the Monte Carlo program MCFM. The effects of a non-zero bottom-quark mass (m_b) cannot be neglected in phase-space regions where the relevant kinematic observable, such as the transverse momentum of the bottom quarks or the invariant mass of the bottom-quark pair, are of the order of m_b. The effects on the total production cross sections are usually smaller than the residual scale uncertainty at NLO in QCD.



rate research

Read More

The production of two weak bosons at the Large Hadron Collider will be one of the most important sources of SM backgrounds for final states with multiple leptons. In this paper we consider several quantities that can help normalize the production of weak boson pairs. Ratios of inclusive cross-sections for production of two weak bosons and Drell-Yan are investigated and the corresponding theoretical errors are evaluated. The possibility of predicting the jet veto survival probability of VV production from Drell-Yan data is also considered. Overall, the theoretical errors on all quantities remain less than 5-20%. The dependence of these quantities on the center of mass energy of the proton-proton collision is also studied.
We study flavor changing effects on the ppbchT process at the Large Hadron Collider(LHC), which are inspired by the left-handed up-type squark mixings in the Minimal Supersymmetric Standard Model(MSSM). We find that the SUSY QCD radiative corrections to $bcH^pm$ coupling can significantly enhance the cross sections at the tree-level by a factor about $1.5 sim 5$ with our choice of parameters. We conclude that the squark mixing mechanism in the MSSM makes the ppbchT process a new channel for discovering a charged Higgs boson and investigating flavor changing effects.
We calculate the Next-to-Leading Order (NLO) QCD corrections to W-b-bbar production including full bottom-quark mass effects. We study the impact of NLO QCD corrections on the total cross section and invariant mass distribution of the bottom-quark jet pair at the Fermilab Tevatron p-pbar collider. We perform a detailed comparison with a calculation that considers massless bottom quarks. We find that neglecting bottom-quark mass effects overestimates the NLO total cross-section for W-b-bbar production at the Tevatron by about 8% independent of the choice of renormalization and factorization scale.
120 - S. Amoroso , J. Fiaschi , F. Giuli 2020
Charged lepton pairs are produced copiously in high-energy hadron collisions via electroweak gauge boson exchange, and are one of the most precisely measured final states in proton-proton collisions at the Large Hadron Collider (LHC). We propose that measurements of lepton angular distributions can be used to improve the accuracy of theoretical predictions for Higgs boson production cross sections at the LHC. To this end, we exploit the sensitivity of the lepton angular coefficient associated with the longitudinal Z-boson polarization to the parton density function (PDF) for gluons resolved from the incoming protons, in order to constrain the Higgs boson cross section from gluon fusion processes. By a detailed numerical analysis using the open-source platform xFitter, we find that high-statistics determinations of the longitudinally polarized angular coefficient at the LHC Run III and high-luminosity HL-LHC improve the PDF systematic uncertainties of the Higgs boson cross section predictions by 50% over a broad range of Higgs boson rapidities.
We investigate the viability of observing charged Higgs bosons (H^+/-) produced in association with W bosons at the CERN Large Hadron Collider, using the leptonic decay H^+ -> tau^+ nu_tau and hadronic W-decay, within different scenarios of the Minimal Supersymmetric Standard Model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible Standard Model background from W+2 jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large tan(beta) and intermediate H^+/- masses (~m_t) when using optimistic cuts whereas for more pessimistic ones we only find a viable signal for very large tan(beta) (>~50). We have also investigated a special class of MSSM scenarios with large mass-splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the CP-violating phases. Even so we find that the signal after cuts remains small except for small masses (~< m_t) with optimistic cuts. Finally, in all the scenarios we have investigated we have only found small CP-asymmetries.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا