Do you want to publish a course? Click here

Nonstandard Higgs in Electroweak Chiral Lagrangian

58   0   0.0 ( 0 )
 Publication date 2006
  fields
and research's language is English




Ask ChatGPT about the research

We add a nonstandard higgs into the traditional bosonic part of electroweak chiral Lagrangian, in purpose of finding out the contribution to EWCL coefficients from processes with internal line higgs particle. To construct the effective Lagrangian with higgs, we use low energy expansion scheme and write down all the independent terms conserving $SU(2)times U_Y(1)$ symmetry in the nonlinear representation which we show is equivalent to the linear representation. Then we integrate out higgs using loop expansion technique at 1-loop level, contributions from all possible terms are obtained. We find three terms, $mathcal{L}_5$, $mathcal{L}_7$, $mathcal{L}_{10}$ in EWCL are important, for which the contributions from higgs can be further expressed in terms of higgs partial decay width $Gamma_{hto ZZ}$ and $Gamma_{hto WW}$. Higg mass dependence of the coefficients in EWCL are discussed.



rate research

Read More

64 - T. Appelquist , G. Wu 1993
A revised and complete list of the electroweak chiral lagrangian operators up to dimension-four is provided. The connection of these operators to the $S$, $T$ and $U$ parameters and the parameters describing the triple gauge boson vertices $WWgamma$ and $WWZ$ is made, and the size of these parameters from new heavy physics is estimated using a one flavor-doublet model of heavy fermions. The coefficients of the chiral lagrangian operators are also computed in this model.
The compact form of the electroweak chiral Lagrangian is a reformulation of its original form and is expressed in terms of chiral rotated electroweak gauge fields, which is crucial for relating the information of underlying theories to the coefficients of the low-energy effective Lagrangian. However the compact form obtained in previous works is not complete. In this letter we add several new chiral invariant terms to it and discuss the contributions of these terms to the original electroweak chiral Lagrangian.
The Standard Model of fundamental interactions, albeit an incredibly elegant and successful theory, lacks explanations for some experimental and theoretical open questions. Interestingly, many of these problems seem to be related to the electroweak symmetry breaking sector of the theory, whose dynamical generation is still unknown. Important questions such as what is the true nature of the Higgs boson, why is its mass so light and so close to that of the electroweak gauge bosons or whether the properties of this particle are the ones predicted in the Standard Model remain unanswered. The LHC is our tool to unveil these mysteries and vector boson scattering processes are the perfect window to access them, since they are considered as the most sensitive observables to new physics in the electroweak symmetry breaking sector. In this Thesis we employ the effective electroweak chiral Lagrangian with a light Higgs, which assumes a strongly interacting electroweak symmetry breaking sector, to perform a model independent analysis of the phenomenology of vector boson scattering processes at the LHC as well as to present quantitative predictions for the sensitivity to possible beyond the Standard Model physics scenarios.
The Twin Higgs model is the preeminent example of a theory of neutral naturalness, where the new particles that alleviate the little hierarchy problem are Standard Model (SM) singlets. The most promising collider search strategy, based on rare Higgs decays, is nevertheless not effective in significant regions of the parameter space of the low energy theory. This underlines the importance of phenomenological studies on ultraviolet completions of the Twin Higgs model, which must lie at a scale lower than 5-10 TeV. We pursue this course in the context of non-supersymmetric completions, focusing on exotic fermions that carry SM electroweak and twin color charges, as well as on exotic vectors that transform as the bi-fundamental of the electroweak or color groups. Both $Z_2$-preserving and $Z_2$-breaking mass spectra are considered for the exotic fermions. In the former case they must be heavier than $sim 1$ TeV, but can still be sizably produced in the decays of the color bi-fundamental vector. In the $Z_2$-breaking scenario, the exotic fermions can have masses in the few hundred GeV range without significantly increasing the fine-tuning. Once pair-produced through the electroweak interactions, they naturally form bound states held together by the twin color force, which subsequently annihilate back to SM particles. The associated resonance signals are discussed in detail. We also outline the phenomenology of the electroweak bi-fundamental vectors, some of which mix with the SM $W$ and $Z$ and can therefore be singly produced in hadron collisions.
We discuss the sensitivity of the $e^+ e^- rightarrow W^+ W^-$ cross section at a future $e^+ e^-$ collider with $sqrt{s}=500$GeV to the non-decoupling effects of a techni-$rho$ like vector resonance. The non-decoupling effects are parametrized by the chiral coefficients of the electroweak chiral perturbation theory. We define renormalization scale independent chiral coefficients by subtracting the Standard Model loop contributions. We also estimate the size of the decoupling effects of the techni-$rho$ resonance by using a phenomenological Lagrangian including the vector resonance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا