The theoretical tools required to construct models in warped extra dimensions are presented. This includes how to localise zero modes in the warped bulk and how to obtain the holographic interpretation using the AdS/CFT correspondence. Several models formulated in warped space are then discussed including nonsupersymmetric and supersymmetric theories as well as their dual interpretation. Finally it is shown how grand unification occurs in warped models.
These lectures review the formalism of renormalization in quantum field theories with special regard to effective quantum field theories. While renormalization theory is part of every advanced course on quantum field theory, for effective theories some more advanced topics become particularly important. This includes the renormalization of composite operators, operator mixing under scale evolution, and the resummation of large logarithms of scale ratios. This course thus sets the basis for many of the more specialized lecture courses delivered at the 2017 Les Houches Summer School.
These lectures, presented at the 2021 Les Houches Summer School on Dark Matter, provide an introduction to key methods and tools of indirect dark matter searches, as well as a status report on the field circa summer 2021. Topics covered include the possible effects of energy injection from dark matter on the early universe, methods to calculate both the expected energy distribution and spatial distribution of particles produced by dark matter interactions, an outline of theoretical models that predict diverse signals in indirect detection, and a discussion of current constraints and some claimed anomalies. These notes are intended as an introduction to indirect dark matter searches for graduate students, focusing primarily on intuition-building estimates and useful concepts and tools.
The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalisations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavour, as well as the simplest next-to-minimal model.
These notes consist of 3 lectures on celestial holography given at the Pre-Strings school 2021. We start by reviewing how semiclassically, the subleading soft graviton theorem implies an enhancement of the Lorentz symmetry of scattering in four-dimensional asymptotically flat gravity to Virasoro. This leads to the construction of celestial amplitudes as $mathcal{S}$-matrices computed in a basis of boost eigenstates. Both massless and massive asymptotic states are recast as insertions on the celestial sphere transforming as global conformal primaries under the Lorentz SL$(2, mathbb{C})$. We conclude with an overview of celestial symmetries and the constraints they impose on celestial scattering.
We propose to combine and slightly extend two existing Les Houches Accords to provide a simple generic interface between beyond-the-standard-model parton-level and event-level generators. All relevant information - particle content, quantum numbers of new states, masses, cross sections, parton-level events, etc - is collected in one single file, which adheres to the Les Houches Event File (LHEF) standard.