Do you want to publish a course? Click here

Extraction of the KK-bar isovector scattering length from pp -> d K^+ K-bar^0 data near threshold

61   0   0.0 ( 0 )
 Added by Markus Buescher
 Publication date 2005
  fields
and research's language is English
 Authors R.H.Lemmer




Ask ChatGPT about the research

The results of a recent experiment measuring the reaction pp -> dK^+ bar K^0 near threshold are interpreted in terms of a spectator model that encapsulates the main features of the observed K^+ bar K^0 invariant mass distribution. A chi^2 fit to this data leads to an imaginary part of the isovector scattering length in the K bar K channel of Im(a_1) = -(0.63 pm 0.24) fm. We then use the Flatte representation of the scattering amplitude to infer a value Re(a_1) = -(0.02 pm 0.02) fm for the real part under the assumption that scaling is approximately satisfied. We show further that it is not possible to exclude the effects of pi^+eta to K^+ bar K^0 channel coupling within the context of our model.

rate research

Read More

The real and imaginary parts of the bar K^0 d scattering length are extracted from the bar K^0 d mass spectrum obtained from the reaction pp to d bar K^0 K^+ measured recently at the Cooler Synchrotron COSY at Julich. We extract a new limit on the K^- d scattering length, namely Im a le 1.3 fm and |Re a| le 1.3 fm. The limit for the imaginary part of the K^- d scattering length is supported by data on the total K^- d cross sections.
Using an effective Lagrangian approach as well as the Quark-Gluon Strings Model we analyze near-threshold production of a0(980)-mesons in the reaction NN -> d K bar{K} as well as the background of non-resonant Kbar{K}-pair production. We argue that the reaction pp -> d K^+ bar{K}^0 at an energy release Q<=100 MeV is dominated by the intermediate production of the a0(980)-resonance. At larger energies the non-resonant K^+bar{K}^0-pair production - where the kaons are produced in a relative P-wave - becomes important. Then effects of final-state interactions are evaluated in a unitarized scattering-length approach and found to be in the order of a 20% suppression close to threshold. Thus in present experiments at the Cooler Synchrotron COSY-Julich for Q<=107 MeV the a_0^+ signal can reliably be separated from the non-resonant K^+bar{K^0} background.
147 - A.Dzyuba , V.Kleber , M.Buescher 2006
The reaction pp -> d K^+ K^0-bar has been investigated at excess energies Q = 47.4 and 104.7 MeV above the K^+ K^0-bar threshold at COSY-Juelich. Coincident dK^+ pairs were detected with the ANKE spectrometer, and events with a missing K^0-bar invariant-mass subsequently identified. The joint analysis of invariant-mass and angular distributions reveals s-wave dominance between the two kaons, in conjunction with a p-wave between the deuteron and the kaon pair, i.e. K K-bar production via the a_0^+(980) channel. Integration of the differential distributions yields total cross sections of sigma(pp -> d K^+ K^0-bar) = (38 +/- 2(stat) +/- 14(syst)) nb and 190 +/- 4(stat) +/- 39(syst)) nb for the low and high Q values, respectively.
The strong K^- p scattering length is extracted within chiral SU(3) unitary approaches from a very large variety of fits to low-energy K^- p scattering data. Very good overall agreement with available scattering data is obtained and the resulting scattering length is compared with the new accurate kaonic hydrogen data from DEAR. The pole structures of the obtained fits to experiment are critically examined.
The neutral kaon meson mixing plays an important role in test of the Standard Model (SM) and new physics beyond it. Scale invariant unparticle physics induces a flavor changing neutral current (FCNC) transition of $K^0-bar K^0$ oscillation at the tree level. In this study, we investigate the scale invariant unparticle physics effects on the $K^0-bar K^0$ mixing. Based on the current experimental data, we give constraints of $K^0-bar K^0$ mixing on the unparticle parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا