Do you want to publish a course? Click here

Supersymmetry Parameter Analysis with Fittino

82   0   0.0 ( 0 )
 Added by Philip Bechtle
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We present the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model to simulated data from ILC and LHC with realistic estimates of the observable uncertainties. Higher order radiative corrections are accounted for where ever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario but they were checked not to depend critically on this assumption. Exploiting a simulated annealing algorithm, a stable result is obtained without any a priori assumptions on the fit parameters. Most of the Lagrangian parameters can be extracted at the percent level or better if theoretical uncertainties are neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain a stable result. The effects of theoretical uncertainties arising from unknown higher-order corrections and parametric uncertainties are examined qualitatively. They appear to be relevant and the result motivates further precision calculations.



rate research

Read More

This article presents the results of a realistic global fit of the Lagrangian parameters of the Minimal Supersymmetric Standard Model with no assumptions on the SUSY breaking mechanism using the fit program Fittino. The fit is performed using the precision of future mass measurements of superpartners at the LHC and mass and polarized topological cross-section measurements at the ILC. Higher order radiative corrections are accounted for wherever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario (general MSSM without assumptions on the breaking mechanism) and for a specific mSUGRA scenario. Exploiting a simulated annealing algorithm, a stable result is obtained without any {it a priori} assumptions on the fit parameters. Most of the Lagrangian parameters can be extracted at the percent level or better if theoretical uncertainties are neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain a stable result.
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e- linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the desired precision. We take here an initial step of testing the SPA scheme by applying the techniques involved to a specific supersymmetry reference point.
We perform global fits to the parameters of the Constrained Minimal Supersymmetric Standard Model (CMSSM) and to a variant with non-universal Higgs masses (NUHM1). In addition to constraints from low-energy precision observables and the cosmological dark matter density, we take into account the LHC exclusions from searches in jets plus missing transverse energy signatures with about 5,fb$^{-1}$ of integrated luminosity. We also include the most recent upper bound on the branching ratio $B_stomumu$ from LHCb. Furthermore, constraints from and implications for direct and indirect dark matter searches are discussed. The best fit of the CMSSM prefers a light Higgs boson just above the experimentally excluded mass. We find that the description of the low-energy observables, $(g-2)_{mu}$ in particular, and the non-observation of SUSY at the LHC become more and more incompatible within the CMSSM. A potential SM-like Higgs boson with mass around 126 GeV can barely be accommodated. Values for ${cal B}(B_stomumu)$ just around the Standard Model prediction are naturally expected in the best fit region. The most-preferred region is not yet affected by limits on direct WIMP searches, but the next generation of experiments will probe this region. Finally, we discuss implications from fine-tuning for the best fit regions.
We investigate the constraints on Supersymmetry arising from available precision measurements using a global fit approach. When interpreted within minimal supergravity (mSUGRA), the data provide significant constraints on the masses of supersymmetric particles, which are predicted to be light enough for an early discovery at the Large Hadron Collider (LHC). We provide predicted mass spectra including, for the first time, full uncertainty bands. The most stringent constraint is from the measurement of the anomalous magnetic moment of the muon. Using the results of these fits, we investigate to which precision mSUGRA and more general MSSM parameters can be measured by the LHC experiments with three different integrated luminosities for a parameter point which approximately lies in the region preferred by current data. The impact of the already available measurements on these precisions, when combined with LHC data, is also studied. We develop a method to treat ambiguities arising from different interpretations of the data within one model and provide a way to differentiate between values of different digital parameters of a model. Finally, we show how measurements at a linear collider with up to 1 TeV centre-of-mass energy will help to improve precision by an order of magnitude.
A scan of soft SUSY breaking parameters within the string theory landscape with the MSSM assumed as the low energy effective field theory -- using a power-law draw to large soft terms coupled with an anthropic selection of a derived weak scale to be within a factor four of our measured value -- predicts a peak probability of m_h~125 GeV with sparticles masses typically beyond the reach of LHC Run 2. Such multiverse simulations usually assume a fixed value of the SUSY conserving superpotential mu parameter to be within the assumed anthropic range, mu<~ 350 GeV. However, depending on the assumed solution to the SUSY mu problem, the expected mu term distribution can actually be derived. In this paper, we examine two solutions to the SUSY mu problem. The first is the gravity-safe-Peccei-Quinn (GSPQ) model based on an assumed Z_{24}^R discrete R-symmetry which allows a gravity-safe accidental, approximate Peccei-Quinn global symmetry to emerge which also solves the strong CP problem. The second case is the Giudice-Masiero solution wherein the mu term effectively acts as a soft term and has a linear draw to large values. For the first case, we also present the expected landscape distribution for the PQ scale f_a; in this case, weak scale anthropics limits its range to the cosmological sweet zone of around f_a~ 10^{11} GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا