Do you want to publish a course? Click here

Parton Ladder Splitting and the Rapidity Dependence of Transverse Momentum Spectra in Deuteron-Gold Collisions at RHIC

60   0   0.0 ( 0 )
 Added by Klaus Werner
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

We present a phenomenological approach (EPOS), based on the parton model, but going much beyond, and try to understand proton-proton and deuteron-gold collisions, in particular the transverse momentum results from all the four RHIC experiments. It turns out that elastic and inelastic parton ladder splitting is the key issue. Elastic splitting is in fact related to screening and saturation, but much more important is the inelastic contribution, being crucial to understand the data. We investigate in detail the rapidity dependence of nuclear effects, which is actually relatively weak in the model, in perfect agreement with the data, if the latter ones are interpreted correctly.



rate research

Read More

The energy and rapidity dependence of the average transverse momentum $langle p_T rangle$ in $pp$ and $pA$ collisions at RHIC and LHC energies are estimated using the Colour Glass Condensate (CGC) formalism. We update previous predictions for the $p_T$ - spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole - target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for the hadron production in $pp$, $dAu$ and $pPb$ collisions at $p_T le 20$ GeV. Moreover, we present our predictions for $langle p_T rangle$ and demonstrate that the ratio $langle p_{T}(y)rangle / langle p_{T}(y = 0)rangle$ decreases with the rapidity and has a behaviour similar to that predicted by hydrodynamical calculations.
228 - Adeola Adeluyi , George Fai 2007
We calculate nuclear modification factors $R_{dAu}$, central-to-peripheral ratios, $R_{CP}$, and pseudorapidity asymmetries $Y_{Asym}$ in deuteron-gold collisions at $sqrt{s} = 200$ GeV in the framework of leading-order (LO) perturbative Quantum Chromodynamics. We use the Eskola-Kolhinen-Salgado (EKS), the Frankfurt-Guzey-Strikman (FGS) and the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions and the Albino-Kramer-Kniehl (AKK) fragmentation functions in our calculations. Results are compared to experimental data from the BRAHMS and STAR collaborations.
We report the energy dependence of mid-rapidity (anti-)deuteron production in Au+Au collisions at $sqrt{s_text{NN}} = $7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV, measured by the STAR experiment at RHIC. The yield of deuterons is found to be well described by the thermal model. The collision energy, centrality, and transverse momentum dependence of the coalescence parameter $B_2$ are discussed. We find that the values of $B_2$ for anti-deuterons are systematically lower than those for deuterons, indicating that the correlation volume of anti-baryons is larger than that of baryons at $sqrt{s_text{NN}}$ from 19.6 to 39 GeV. In addition, values of $B_2$ are found to vary with collision energy and show a broad minimum around $sqrt{s_text{NN}}= $20 to 40 GeV, which might imply a change of the equation of state of the medium in these collisions.
The transverse momentum transfer correlation is introduced as a sensitive probe that can be used to discriminate between models for parton dynamics in low-x deep-inelastic scattering. Expectations for uncorrelated models and models with short-range or long-range correlations are discussed and confronted to results obtained from the LEPTO and ARIADNE Monte Carlo simulations programmes.
We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, u, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with u for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا