Do you want to publish a course? Click here

The Standard Model on Non-Commutative Space-Time: Strong Interactions Included

82   0   0.0 ( 0 )
 Added by Blazenka Melic
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

This paper is a direct extension of our paper: The Standard Model on Non-Commutative Space-Time: Electroweak currents and Higgs sector, hep-ph/0502249, now with strong interactions included. Apart from the non-commutative corrections to Standard Model strong interactions, several new interactions appear. The most interesting ones are gluonic interactions with the electroweak sector. They are elaborated here in detail and the Feynman rules for interactions up to O(gs^2 theta) are provided.



rate research

Read More

In this article we review the electroweak charged and neutral currents in the Non-Commutative Standard Model (NCSM) and compute the Higgs and Yukawa parts of the NCSM action. With the aim to make the NCSM accessible to phenomenological considerations, all relevant expressions are given in terms of physical fields and Feynman rules are provided.
67 - A. Iorio , T. Sykora 2001
We study the space-time symmetries and transformation properties of the non-commutative U(1) gauge theory, by using Noether charges. We carry out our analysis by keeping an open view on the possible ways $theta^{mu u}$ could transform. We conclude that $theta^{mu u}$ cannot transform under any space-time transformation since the theory is not invariant under the conformal transformations, with the only exception of space-time translations. The same analysis applies to other gauge groups.
104 - L. Martina , O.K. Pashaev 2003
The Moyal *-deformed noncommutative version of Burgers equation is considered. Using the *-analog of the Cole-Hopf transformation, the linearization of the model in terms of the linear heat equation is found. Noncommutative q-deformations of shock soliton solutions and their interaction are described
We investigate how non-standard neutrino interactions (NSIs) with matter can be generated by new physics beyond the Standard Model (SM) and analyse the constraints on the NSIs in these SM extensions. We focus on tree-level realisations of lepton number conserving dimension 6 and 8 operators which do not induce new interactions of four charged fermions (since these are already quite constrained) and discard the possibility of cancellations between diagrams with different messenger particles to circumvent experimental constraints. The cases studied include classes of dimension 8 operators which are often referred to as examples for ways to generate large NSIs with matter. We find that, in the considered scenarios, the NSIs with matter are considerably more constrained than often assumed in phenomenological studies, at least ${cal O}(10^{-2})$. The constraints on the flavour-conserving NSIs turn out to be even stronger than the ones for operators which also produce interactions of four charged fermions at the same level. Furthermore, we find that in all studied cases the generation of NSIs with matter also gives rise to NSIs at the source and/or detector of a possible future Neutrino Factory.
182 - O. G. Miranda , H. Nunokawa 2015
Neutrino oscillations have become well-known phenomenon; the measurements of neutrino mixing angles and mass squared differences are continuously improving. Future oscillation experiments will eventually determine the remaining unknown neutrino parameters, namely, the mass ordering, normal or inverted, and the CP-violating phase. On the other hand, the absolute mass scale of neutrinos could be probed by cosmological observations, single beta decay as well as by neutrinoless double beta decay experiments. Furthermore, the last one may shed light on the nature of neutrinos, Dirac or Majorana, by measuring the effective Majorana mass of neutrinos. However, the neutrino mass generation mechanism remains unknown. A well-motivated phenomenological approach to search for new physics, in the neutrino sector, is that of non-standard interactions. In this short review, the current constraints in this picture, as well as the perspectives from future experiments, are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا