Do you want to publish a course? Click here

Search for Higgs Bosons Decay $Hto gammagamma$ Using Vector Boson Fusion

305   0   0.0 ( 0 )
 Added by Bruce Mellado
 Publication date 2004
  fields
and research's language is English




Ask ChatGPT about the research

The sensitivity of the ATLAS experiment to low mass SM Higgs produced via Vector Boson Fusion mechanism with $Hto gammagamma$ is invest igated. A cut based event selection has been chosen to optimize the expected signal significance with this decay mode. A signal significance of 2. 2$ sigma$ may be achieved for $M_H=130 gev$ with 30 fb$^{-1}$ of accumulated luminosity.



rate research

Read More

267 - S.Asai , G.Azuelos , C.Buttar 2004
The potential for the discovery of a Standard Model Higgs boson in the mass range m_H < 2 m_Z in the vector boson fusion mode has been studied for the ATLAS experiment at the LHC. The characteristic signatures of additional jets in the forward regions of the detector and of low jet activity in the central region allow for an efficient background rejection. Analyses for the H -> WW and H -> tau tau decay modes have been performed using a realistic simulation of the expected detector performance. The results obtained demonstrate the large discovery potential in the H -> WW decay channel and the sensitivity to Higgs boson decays into tau-pairs in the low-mass region around 120 GeV.
180 - W. Hollik , T. Plehn , M. Rauch 2008
We compute the complete supersymmetric next-to-leading order corrections to the production of a light Higgs boson in weak boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading order corrections in the Standard Model. The supersymmetric QCD corrections turn out to be significantly smaller than their electroweak counterparts. These higher--order corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.
We study the observability of new interactions which modify Higgs-pair production via vector-boson fusion processes at the LHC and at future proton-proton colliders. In an effective-Lagrangian approach, we explore in particular the effect of the operator $h^2 W_{mu u}^a W^{a,mu u}$, which describes the interaction of the Higgs boson with transverse vector-boson polarization modes. By tagging highly boosted Higgs bosons in the final state, we determine projected bounds for the coefficient of this operator at the LHC and at a future 27 TeV or 100 TeV collider. Taking into account unitarity constraints, we estimate the new-physics discovery potential of Higgs pair production in this channel.
The data taken in Run II at the LHC have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at NLO and NNLO QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the $Delta y_{jj}$ and/or $m_{jj}$ cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson $p_T$, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement.
We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around $pm 5%$ and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا