Do you want to publish a course? Click here

Highly Boosted Higgs Bosons and Unitarity in Vector-Boson Fusion at Future Hadron Colliders

114   0   0.0 ( 0 )
 Added by Zhijie Zhao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study the observability of new interactions which modify Higgs-pair production via vector-boson fusion processes at the LHC and at future proton-proton colliders. In an effective-Lagrangian approach, we explore in particular the effect of the operator $h^2 W_{mu u}^a W^{a,mu u}$, which describes the interaction of the Higgs boson with transverse vector-boson polarization modes. By tagging highly boosted Higgs bosons in the final state, we determine projected bounds for the coefficient of this operator at the LHC and at a future 27 TeV or 100 TeV collider. Taking into account unitarity constraints, we estimate the new-physics discovery potential of Higgs pair production in this channel.



rate research

Read More

159 - William B. Kilgore 2002
I report on a calculation of the inclusive Higgs boson production cross section at hadron colliders at next-to-next-to-leading order in QCD. The result is computed as an expansion about the threshold region. By continuing the expansion to very high order, we map the result onto basis functions and obtain the result in closed analytic form.
132 - J. de Blas 2019
This document aims to provide an assessment of the potential of future colliding beam facilities to perform Higgs boson studies. The analysis builds on the submissions made by the proponents of future colliders to the European Strategy Update process, and takes as its point of departure the results expected at the completion of the HL-LHC program. This report presents quantitative results on many aspects of Higgs physics for future collider projects of sufficient maturity using uniform methodologies. A first version of this report was prepared for the purposes of discussion at the Open Symposium in Granada (13-16/05/2019). Comments and feedback received led to the consideration of additional run scenarios as well as a refined analysis of the impact of electroweak measurements on the Higgs coupling extraction.
77 - Chung Kao , Yili Wang 2005
We investigate the prospects for the discovery of neutral Higgs bosons with a pair of muons by direct searches at the CERN Large Hadron Collider (LHC) as well as by indirect searches in the rare decay $B_s to mu^+mu^-$ at the Fermilab Tevatron and the LHC. Promising results are found for the minimal supersymmetric standard model, the minimal supergravity (mSUGRA) model, and supergravity models with non-universal Higgs masses (NUHM SUGRA). For $tanbeta simeq 50$, we find that (i) the contours for a branching fraction of $B(B_s to mu^+mu^-) = 1 times 10^{-8}$ in the parameter space are very close to the $5sigma$ contours for $pp to bphi^0 to bmu^+mu^- +X, phi^0 = h^0, H^0, A^0$ at the LHC with an integrated luminosity ($L$) of 30 fb$^{-1}$, (ii) the regions covered by $B(B_s to mu^+mu^-) ge 5times 10^{-9}$ and the discovery region for $bphi^0 to bmu^+mu^-$ with 300 fb$^{-1}$ are complementary in the mSUGRA parameter space, (iii) in NUHM SUGRA models, a discovery of $B(B_s to mu^+mu^-) simeq 5times 10^{-9}$ at the LHC will cover regions of the parameter space beyond the direct search for $bphi^0 to bmu^+mu^-$ with $L = 300$ fb$^{-1}$.
High-energy lepton colliders with a centre-of-mass energy in the multi-TeV range are currently considered among the most challenging and far-reaching future accelerator projects. Studies performed so far have mostly focused on the reach for new phenomena in lepton-antilepton annihilation channels. In this work we observe that starting from collider energies of a few TeV, electroweak (EW) vector boson fusion/scattering (VBF) at lepton colliders becomes the dominant production mode for all Standard Model processes relevant to studying the EW sector. In many cases we find that this also holds for new physics. We quantify the size and the growth of VBF cross sections with collider energy for a number of SM and new physics processes. By considering luminosity scenarios achievable at a muon collider, we conclude that such a machine would effectively be a high-luminosity weak boson collider, and subsequently offer a wide range of opportunities to precisely measure EW and Higgs coupling as well as to discover new particles.
Motivated by new models of dynamical electroweak symmetry breaking that predict a light composite higgs boson, we build an effective lagrangian which describes the Standard Model (with a light Higgs) and vector resonances. We compute the cross section for the associate production of a higgs and a gauge boson. For some values of model parameters we find that the cross section is significantly enhanced with respect to the Standard Model. This enhancement is similar at the LHC and the Tevatron for the same range of resonance mass.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا