Do you want to publish a course? Click here

Magnetic Moments of Baryons with a Single Heavy Quark

72   0   0.0 ( 0 )
 Added by Herbert Weigel
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We calculate the magnetic moments of heavy baryons with a single heavy quark in the bound-state approach. In this approach the heavy baryons is considered as a heavy meson bound in the field of a light baryon. The light baryon field is represented as a soliton excitation of the light pseudoscalar and vector meson fields. For these calculations we adopt a model that is both chirally invariant and consistent with the heavy quark spin symmetry. We gauge the model action with respect to photon field in order to extract the electromagnetic current operator and obtain the magnetic moments by computing pertinent matrix elements of this operator between the bound state wavefunctions. We compare our predictions for the magnetic moments with results of alternative approaches for the description of heavy baryon properties.



rate research

Read More

92 - H. Weigel , S. Scholl 2003
We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.
Quadrupole moments of decuplet baryons and the octet-decuplet transition quadrupole moments are calculated using Morpurgos general QCD parameterization method. Certain relations among the decuplet and the octet to decuplet transition quadrupole moments are derived. These can be used to predict the $Delta$ quadrupole moments which are difficult to measure.
78 - Alfons J. Buchmann 2019
We calculate the charge quadrupole and magnetic octupole moments of baryons using a group theoretical approach based on broken SU(6) spin-flavor symmetry. The latter is an approximate symmetry of the QCD Lagrangian which becomes exact in the large color N_c limit. Spin-flavor symmetry breaking is induced by one-, two-, and three-quark terms in the electromagnetic current operator. Two- and three-quark currents provide the leading contributions for higher multipole moments, despite being of higher order in an 1/N_c expansion. Our formalism leads to relations between N --> N* transition multipole moments and nucleon ground state properties. We compare our results to experimental quadrupole and octupole transition moments extracted from measured helicity amplitudes.
The transition magnetic moments between negative parity, spin-1/2 heavy baryons are studied in framework of the light cone QCD sum rules. By constructing the sum rules for different Lorentz structures, the unwanted contributions coming from negative (positive) to positive (negative) parity transitions are removed. It is found that the magnetic moments between neutral negative parity heavy $Xi_Q^{prime 0}$ and $Xi_Q^0$ baryons are very small. Magnetic moments of the $Sigma_Q to Lambda_Q$ and $ Xi_Q^{prime pm} to Xi_Q^pm$ transitions are quite large and can be measured in further experiments.
261 - T. M. Aliev , K. Azizi , M. Savci 2015
The magnetic moments of the negative parity, spin-1/2 baryons containing single heavy quark are calculated. The pollution that occur from the transitions between positive and negative parity baryons are removed by constructing the sum rules from different Lorentz structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا