Do you want to publish a course? Click here

Quadrupole moments of baryons

113   0   0.0 ( 0 )
 Added by A. J. Buchmann
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Quadrupole moments of decuplet baryons and the octet-decuplet transition quadrupole moments are calculated using Morpurgos general QCD parameterization method. Certain relations among the decuplet and the octet to decuplet transition quadrupole moments are derived. These can be used to predict the $Delta$ quadrupole moments which are difficult to measure.



rate research

Read More

78 - Alfons J. Buchmann 2019
We calculate the charge quadrupole and magnetic octupole moments of baryons using a group theoretical approach based on broken SU(6) spin-flavor symmetry. The latter is an approximate symmetry of the QCD Lagrangian which becomes exact in the large color N_c limit. Spin-flavor symmetry breaking is induced by one-, two-, and three-quark terms in the electromagnetic current operator. Two- and three-quark currents provide the leading contributions for higher multipole moments, despite being of higher order in an 1/N_c expansion. Our formalism leads to relations between N --> N* transition multipole moments and nucleon ground state properties. We compare our results to experimental quadrupole and octupole transition moments extracted from measured helicity amplitudes.
71 - S. Scholl , H. Weigel 2003
We calculate the magnetic moments of heavy baryons with a single heavy quark in the bound-state approach. In this approach the heavy baryons is considered as a heavy meson bound in the field of a light baryon. The light baryon field is represented as a soliton excitation of the light pseudoscalar and vector meson fields. For these calculations we adopt a model that is both chirally invariant and consistent with the heavy quark spin symmetry. We gauge the model action with respect to photon field in order to extract the electromagnetic current operator and obtain the magnetic moments by computing pertinent matrix elements of this operator between the bound state wavefunctions. We compare our predictions for the magnetic moments with results of alternative approaches for the description of heavy baryon properties.
222 - A.J. Buchmann 2007
The charge radii and quadrupole moments of baryons with nonzero strangeness are calculated using a parametrization method based on the symmetries of the strong interaction.
We calculate the quark spin contribution to the total angular momentum of flavor octet and flavor decuplet ground state baryons using a spin-flavor symmetry based parametrization method of quantum chromodynamics. We find that third order SU(6) symmetry breaking three-quark operators are necessary to explain the experimental result Sigma_1=0.32(10). For spin 3/2 decuplet baryons we predict that the quark spin contribution is Sigma_3=3.93(22), i.e. considerably larger than their total angular momentum.
92 - H. Weigel , S. Scholl 2003
We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا