Do you want to publish a course? Click here

Is there any room for new physics in the muon g-2 problem?

257   0   0.0 ( 0 )
 Added by Erik Bartos
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

Is there any room for new physics in the muon g-2 problem?



rate research

Read More

We study the constraints imposed by perturbative unitarity on the new physics interpretation of the muon $g-2$ anomaly. Within a Standard Model Effective Field Theory (SMEFT) approach, we find that scattering amplitudes sourced by effective operators saturate perturbative unitarity at about 1 PeV. This corresponds to the highest energy scale that needs to be probed in order to resolve the new physics origin of the muon $g-2$ anomaly. On the other hand, simplified models (e.g.~scalar-fermion Yukawa theories) in which renormalizable couplings are pushed to the boundary of perturbativity still imply new on-shell states below 200 TeV. We finally suggest that the highest new physics scale responsible for the anomalous effect can be reached in non-renormalizable models at the PeV scale.
After a brief review of the muon g-2 status, we discuss hypothetical errors in the Standard Model prediction that could explain the present discrepancy with the experimental value. None of them looks likely. In particular, an hypothetical increase of the hadroproduction cross section in low-energy e^+e^- collisions could bridge the muon g-2 discrepancy, but is shown to be unlikely in view of current experimental error estimates. If, nonetheless, this turns out to be the explanation of the discrepancy, then the 95% CL upper bound on the Higgs boson mass is reduced to about 130 GeV which, in conjunction with the experimental 114.4 GeV 95% CL lower bound, leaves a narrow window for the mass of this fundamental particle.
Magnetic monopoles have been a subject of study for more than a century since the first ideas by A. Vaschy and P. Curie, circa 1890. In 1974, Y. Nambu proposed a model for magnetic monopoles exploring a parallelism between the broken symmetry Higgs and the superconductivity Ginzburg-Landau theories in order to describe the pions quark-antiquark confinement states. There, Nambu describes an energetic string where its end points behave like two magnetic monopoles with opposite magnetic charges -- quark and antiquark. Consequently, not only the interaction among monopole and antimonopole, mediated by a massive vector boson (Yukawa potential), but also the energetic string (linear potential) contributes to the effective interaction potential. We propose here a monopole-antimonopole non confining attractive interaction of the Nambu-type, and then investigate the formation of bound states, the monopolium. Some necessary conditions for the existence of bound states to be fulfilled by the proposed Nambu-type potential, Kato weakness, Set^o and Bargmann conditions, are verified. In the following, ground state energies are estimated for a variety of monopolium reduced mass, from $10^2$MeV to $10^2$TeV, and Compton interaction lengths, from $10^{-2}$am to $10^{-1}$pm, where discussion about non relativistic and relativistic limits validation is carried out.
After a brief review of the muon g-2 status, we discuss hypothetical errors in the Standard Model prediction that might explain the present discrepancy with the experimental value. None of them seems likely. In particular, a hypothetical increase of the hadroproduction cross section in low-energy e+e- collisions could bridge the muon g-2 discrepancy, but it is shown to be unlikely in view of current experimental error estimates. If, nonetheless, this turns out to be the explanation of the discrepancy, then the 95% CL upper bound on the Higgs boson mass is reduced to about 135GeV which, in conjunction with the experimental 114.4GeV 95% CL lower bound, leaves a narrow window for the mass of this fundamental particle.
The Fermilab Muon $g-2$ experiment recently reported its first measurement of the anomalous magnetic moment $a_mu^{textrm{FNAL}}$, which is in full agreement with the previous BNL measurement and pushes the world average deviation $Delta a_mu^{2021}$ from the Standard Model to a significance of $4.2sigma$. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for $a_mu$, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large $Delta a_mu$ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large $Delta a_mu$ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the $Delta a_mu$ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of $a_mu$ only in specif
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا