Do you want to publish a course? Click here

Yukawa coupling unification and non-universal gaugino mediation of supersymmetry breaking

191   0   0.0 ( 0 )
 Added by Csaba Balazs
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

The requirement of Yukawa coupling unification highly constrains the SUSY parameter space. In several SUSY breaking scenarios it is hard to reconcile Yukawa coupling unification with experimental constraints from B(b->s gamma) and the muon anomalous magnetic moment a_mu. We show that b-tau or even t-b-tau Yukawa unification can be satisfied simultaneously with b->s gamma and a_mu in the non-universal gaugino mediation scenario. Non-universal gaugino masses naturally appear in higher dimensional grand unified models in which gauge symmetry is broken by orbifold compactification. Relations between SUSY contributions to fermion masses, b->s gamma and a_mu which are typical for models with universal gaugino masses are relaxed. Consequently, these phenomenological constraints can be satisfied simultaneously with a relatively light SUSY spectrum, compared to models with universal gaugino masses.



rate research

Read More

163 - H. Baer , C. Balazs , A. Belyaev 2002
Recently, extra dimensional SUSY GUT models have been proposed in which compactification of the extra dimension(s) leads to a breakdown of the gauge symmetry and/or supersymmetry. We examine a particular class of higher-dimensional models exhibiting supersymmetry and SU(5) or SO(10) GUT symmetry. SUSY breaking occurs on a hidden brane, and is communicated to the visible brane via gaugino mediation. Non-universal gaugino masses are developed at the compactification scale as a consequence of a restricted gauge symmetry on the hidden brane. In this case, the compactification scale is at or slightly below the GUT scale. We examine the parameter space of such models where gaugino masses are related due to a Pati-Salam symmetry on the hidden brane. We find limited but significant regions of model parameter space where a viable spectra of SUSY matter is generated. Our results are extended to the more general case of three independent gaugino masses; here we find that large parameter space regions open up for large values of the U(1) gaugino mass M_1. We also find the relic density of neutralinos for these models to be generally below expectations from cosmological observations, thus leaving room for hidden sector states to make up the bulk of cold dark matter. Finally, we evaluate the branching fraction BF(b -> s gamma) and muon anomalous magnetic moment a_mu.
We demonstrate that natural supersymmetry is readily realized in the framework of SU(4)_c times SU(2)_L times SU(2)_R with non-universal gaugino masses. Focusing on ameliorating the little hierarchy problem, we explore the parameter space of this model which yields small fine-tuning measuring parameters (natural supersymmetry) at the electroweak scale (Delta_{EW}) as well as at high scale (Delta_{HS}). It is possible to have both Delta_{EW} and Delta_{HS} less than 100 in these models, (2 % or better fine-tuning), while keeping the light CP-even (Standard Model-like) Higgs mass in the 123 GeV-127 GeV range. The light stop quark mass lies in the range 700 GeV <m_{tilde{t}_{1}}< 1500 GeV, and the range for the light stau lepton mass is 900 GeV <m_{tilde{tau}_{1}}< 1300 GeV. The first two family squarks are in the mass range 3000 GeV <m_{tilde{t}_{1}}< 4500 GeV, and for the gluino we find 2500 GeV <m_{tilde{g}_{1}}< 3500 GeV. We do not find any solution with natural supersymmetry which yields significant enhancement for Higgs production and decay in the diphoton channel.
We consider a scenario where the supersymmetry breaking and its mediation, and the cancellation of the theta parameter of SU(3)c are all caused by a single chiral multiplet. The string axion multiplet is a natural candidate of such a single superfield. We show that the scenario provides a convincing basis of focus point gaugino mediation, where the electroweak scale is explained with a moderate tuning among the parameters of the theory.
We explore the implications of t-b-tau (and b-tau) Yukawa coupling unification condition on the fundamental parameter space and sparticle spectroscopy in the minimal gauge mediated supersymmetry breaking (mGMSB) model. We find that this scenario prefers values of the CP-odd Higgs mass m_A > 1 TeV, with all colored sparticle masses above 3 TeV. These predictions will be hard to test at LHC13 but they may be testable at HE-LHC 33 TeV or a 100 TeV collider. Both t-b-tau and b-tau Yukawa coupling unifications prefer a relatively light gravitino with mass < 30 eV, which makes it a candidate hot dark matter particle. However, it cannot account for more than 15 % of the observed dark matter density.
We systematically construct two kinds of models with canonical gauge coupling unification and universal high-scale supersymmetry breaking. In the first we introduce standard vector-like particles while in the second we also include non-standard vector-like particles. We require that the gauge coupling unification scale is from 5 x 10^{15} GeV to the Planck scale, that the universal supersymmetry breaking scale is from 10 TeV to the unification scale, and that the masses of the vector-like particles (M_V) are universal and in the range from 200 GeV to 1 TeV. Using two-loop renormalization group equation (RGE) running for the gauge couplings and one-loop RGE running for Yukawa couplings and the Higgs quartic coupling, we calculate the supersymmetry breaking scales, the gauge coupling unification scales, and the corresponding Higgs mass ranges. When the vector-like particle masses are less than 1 TeV, these models can be tested at the LHC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا