Do you want to publish a course? Click here

The QCD Phase Diagram at Nonzero Temperature, Baryon and Isospin Chemical Potentials in Random Matrix Theory

77   0   0.0 ( 0 )
 Added by Bertram Klein
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

We introduce a random matrix model with the symmetries of QCD at finite temperature and chemical potentials for baryon number and isospin. We analyze the phase diagram of this model in the chemical potential plane for different temperatures and quark masses. We find a rich phase structure with five different phases separated by both first and second order lines. The phases are characterized by the pion condensate and the chiral condensate for each of the flavors. In agreement with lattice simulations, we find that in the phase with zero pion condensate the critical temperature depends in the same way on the baryon number chemical potential and on the isospin chemical potential. At nonzero quark mass, we remarkably find that the critical end point at nonzero temperature and baryon chemical potential is split in two by an arbitrarily small isospin chemical potential. As a consequence, there are two crossovers that separate the hadronic phase from the quark-gluon plasma phase at high temperature. Detailed analytical results are obtained at zero temperature and in the chiral limit.



rate research

Read More

The phase structure of two-flavor QCD is explored for thermal systems with finite baryon- and isospin-chemical potentials, mu_B and mu_{iso}, by using the Polyakov-loop extended Nambu--Jona-Lasinio (PNJL) model. The PNJL model with the scalar-type eight-quark interaction can reproduce lattice QCD data at not only mu_{iso}=mu_B=0 but also mu_{iso}>0 and mu_B=0. In the mu_{iso}-mu_{B}-T space, where T is temperature, the critical endpoint of the chiral phase transition in the mu_B-T plane at mu_{iso}=0 moves to the tricritical point of the pion-superfluidity phase transition in the mu_{iso}-T plane at mu_B=0 as mu_{iso} increases. The thermodynamics at small T is controlled by sqrt{sigma^2+pi^2} defined by the chiral and pion condensates, sigma and pi.
The QCD phase diagram is studied in the presence of an isospin asymmetry using continuum extrapolated staggered quarks with physical masses. In particular, we investigate the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition. The simulations are performed with a small explicit breaking parameter in order to avoid the accumulation of zero modes and thereby stabilize the algorithm. The limit of vanishing explicit breaking is obtained by means of an extrapolation, which is facilitated by a novel improvement program employing the singular value representation of the Dirac operator. Our findings indicate that no pion condensation takes place above $Tapprox 160$ MeV and also suggest that the deconfinement crossover continuously connects to the BEC-BCS crossover at high isospin asymmetries. The results may be directly compared to effective theories and model approaches to QCD.
In this contribution we investigate the phase diagram of QCD in the presence of an isospin chemical potential. To alleviate the infrared problems of the theory associated with pion condensation, we introduce the pionic source as an infrared regulator. We discuss various methods to extrapolate the results to vanishing pionic source, including a novel method based on the singular value spectrum of the massive Dirac operator, a leading-order reweighting and a spline Monte-Carlo fit. Our main results concern the phase transition boundary between the normal and the pion condensation phases and the chiral/deconfinement transition temperature as a function of the chemical potential. In addition, we perform a quantitative comparison between our direct results and a Taylor-expansion obtained at zero chemical potential to assess the applicability range of the latter.
We study the phase diagram and the thermodynamic properties of QCD at nonzero isospin asymmetry at physical quark masses with staggered quarks. In particular, continuum results for the phase boundary between the normal and the pion condensation phases and the chiral/deconfinement transition are presented. Our findings indicate that the pion condensation phase is restricted to $Tlesssim170$~MeV for isospin chemical potentials up to 325~MeV. We also use the data to test the range of validity of the Taylor expansion method and show first results for the equation of state.
311 - P. Cea , L. Cosmai , M. DElia 2012
We determine the (pseudo)critical lines of QCD with two degenerate staggered fermions at nonzero temperature and quark or isospin density, in the region of imaginary chemical potentials; analytic continuation is then used to prolongate to the region of real chemical potentials. We obtain an accurate determination of the curvatures at zero chemical potential, quantifying the deviation between the case of finite quark and of finite isospin chemical potential. Deviations from a quadratic dependence of the pseudocritical lines on the chemical potential are clearly seen in both cases: we try different extrapolations and, for the case of nonzero isospin chemical potential, confront them with the results of direct Monte Carlo simulations. Finally we find that, as for the finite quark density case, an imaginary isospin chemical potential can strengthen the transition till turning it into strong first order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا