No Arabic abstract
We discuss the pair production of charginos in collisions of polarized photons $gammagamma to tilde{chi}_i^+ tilde{chi}_i^-$, ($i=1,2$) and the subsequent leptonic decay of the lighter chargino $tilde{chi}_1^+ to tilde{chi}_1^0 e^+ u_e$ including the complete spin correlations. Analytical formulae are given for the polarization and the spin-spin correlations of the charginos. Since the production is a pure QED process the decay dynamics can be studied separately. For high energy photons from Compton backscattering of polarized laser pulses off polarized electron beams numerical results are presented for the cross section, the angular distribution and the forward-backward asymmetry of the decay positron. Finally we study the dependence on the gaugino mass parameter $M_1$ and on the sneutrino mass for a gaugino-like MSSM scenario.
A Monte-Carlo analysis on production and decay of supersymmetric charginos at a future photon-collider is presented. A photon collider offers the possibility of a direct branching-ratio measurement. In this study, the process gamma,gamma -> chi_1^+,chi_1^- -> W+W-chi_1^0chi_1^0 -> 4-jets,chi_1^0chi_1^0 has been considered for a specific mSUGRA scenario. Various backgrounds and parameterised detector simulation have been included. Depending on the centre-of-mass energy, a statistical error for the directly measurable branching ratio BR(chi}_1^+ ->chi}_1^0 W^+) of up to 3.5% can be reached.
Starting from a bound-state model of weakly bound quarks for ($q bar{q}$) mesons, we derive a formalism for computing the production or decay of such mesons, whatever the value of their internal orbital angular momentum L. That approach appears as a natural generalization of the Brodsky-Lepage formalism (valid only for L=0) that has been widely used in recent years for the computation of exclusive processes in perturbative QCD. We here apply it to the production, in photon-photon collisions, of: i) tensor-meson pairs; ii) pseudotensor-meson pairs; iii) hybrid pairs made of a pion and a pseudotensor meson. The numerical results we obtain allow for some hope of experimentally identifying such pairs, in the charged channels, at high-energy e^+e^- colliders of the next generation, provided integrated luminosities as high as $approx 10^{40} cm^{-2}$ can be reached.
A phenomenological study of the isolated photon production in high energy $pp$ and $pA$ collisions at RHIC and LHC energies is performed. Using the color dipole approach we investigate the production cross section differential in the transverse momentum of the photon considering three different phenomenological models for the universal dipole cross section. We also present the predictions for the rapidity dependence of the ratio of $pA$ to $pp$ cross sections. As a further test of the formalism, for different energies and photon rapidites we analyse the correlation function in azimuthal angle $Deltaphi$ between the photon and a forward pion. The characteristic double-peak structure of the correlation function around $Delta phisimeq pi$ observed previously for Drell-Yan pair production is found for isolated photon emitted into the forward rapidity region which can be tested by future experiments.
Recent progress in application of higher order QCD calculations to jet and inclusive particle production in photon induced collisions is reviewed. Attention is paid to theoretical uncertainties of such calculations, particularly those coming from the choice of renormalization and factorization scales.
We study inclusive charged-hadron production in collisions of quasireal photons at NLO in perturbative QCD, using fragmentation functions recently extracted from PEP and LEP1 data. We superimpose the direct (DD), single-resolved (DR), and double-resolved (RR) gamma-gamma channels. First, we confront existing data taken by TASSO at PETRA and by MARK II at PEP with our NLO calculations. We also make comparisons with the neutral-kaon to charged-hadron ratio measured by MARK II. Then, we present NLO predictions for LEP2, a next-generation e+e- linear collider (NLC) in the TESLA design, and a Compton collider obtained by converting a NLC. We analyze transverse-momentum and rapidity spectra with regard to the scale dependence, the interplay of the DD, DR, and RR components, the sensitivity to the gluon density in the resolved photon, and the influence of gluon fragmentation. It turns out that the inclusive measurement of small-p_T hadrons at a Compton collider would greatly constrain the gluon density of the photon and the gluon fragmentation function.