Do you want to publish a course? Click here

New Signal for Universal Extra Dimensions

224   0   0.0 ( 0 )
 Added by Cosmin Macesanu
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

In the universal extra dimensions (UED) scenario, the tree level masses of the first level Kaluza-Klein (KK) excitations of Standard Model particles are essentially degenerate. Radiative corrections will, however, lift this degeneracy, allowing the first level excitations to decay to the lightest KK particle (LKP), which is the gamma^*. KK number conservation implies that the LKP is stable. Then, since the SM particles radiated during these decays are rather soft, the observation of KK excitations production and decay in collider experiments will be quite difficult. We propose to add to this model KK number violating interactions mediated by gravity, which allow the gamma^* to decay to a photon and a KK graviton. For a variety a models and a large range of parameters, these decays will occur within the detector. Thus, pair production of KK excitations will give rise to a striking collider signal, consisting of two hard photons plus large missing energy (due to escaping gravitons). We evaluate the cross-section for these signals at the Tevatron and LHC, and derive the reach of these colliders in the search for universal extra dimensions.



rate research

Read More

The minimal Universal Extra Dimension scenario is highly constrained owing to opposing constraints from the observed relic density on the one hand, and the non-observation of new states at the LHC on the other. Simple extensions in five-dimensions can only postpone the inevitable. Here, we propose a six-dimensional alternative with the key feature being that the SM quarks and leptons are localized on orthogonal directions whereas gauge bosons traverse the entire bulk. Several different realizations of electroweak symmetry breaking are possible, while maintaining agreement with low energy observables. This model is not only consistent with all the current constraints opposing the minimal Universal Extra Dimension scenario but also allows for a multi-TeV dark matter particle without the need for any fine-tuning. In addition, it promises a plethora of new signatures at the LHC and other future experiments.
We consider the universal extra dimensions scenario of Appelquist, Cheng, and Dobrescu, in which all of the SM fields propagate into one extra compact dimension, estimated therein to be as large as $sim (350$ GeV$)^{-1}$. Tree-level KK number conservation dictates that the associated KK excitations can not be singly produced. We calculate the cross sections for the direct production of KK excitations of the gluon, $gs$, and two distinct towers of quarks, qs and $qt$, in proton-antiproton collisions at the Tevatron Run I and II energies in addition to proton-proton collisions at the Large Hadron Collider energy. The experimental signatures for these processes depend on the stability of the lowest-lying KK excitations of the gluons and light quarks. We find that the Tevatron Run I mass bound for KK quark and gluon final states is about 350--400 GeV, while Run II can push this up to 450--500 GeV at its initial luminosity and 500--550 GeV if the projected final luminosity is reached. The LHC can probe much further: The LHC will either discover UED KK excitations of quarks and gluons or extend the mass limit to about 3 TeV.
We review the six dimensional universal extra dimension models compactified on the sphere $S^2$, the orbifold $S^2/Z_2$, and the projective sphere, which are based on the spontaneous compactification mechanism on the sphere. In particular, we spell out the application of the Newman-Penrose eth-formalism on these models with some technical details on the derivation of the Kaluza-Klein modes and their interactions, and revisit the problem in the existence of the zero mode of $U(1)_X$ additional gauge boson required for the spontaneous compactification. We also explain the theoretical background on the vacuum stability argument for the upper bound on the ultraviolet cutoff scale.
We contrast the experimental signatures of low energy supersymmetry and the model of Universal Extra Dimensions and discuss various methods for their discrimination at hadron and lepton colliders. We study the discovery reach of hadron colliders for level 2 Kaluza-Klein modes, which would indicate the presence of extra dimensions. We also investigate the possibility to differentiate the spins of the superpartners and KK modes by means of the asymmetry method of Barr. We then review the methods for discriminating between the two scenarios at a high energy linear collider such as CLIC. We consider the processes of Kaluza-Klein muon pair production in universal extra dimensions in parallel to smuon pair production in supersymmetry. We find that the angular distributions of the final state muons, the energy spectrum of the radiative return photon and the total cross-section measurement are powerful discriminators between the two models.
We reconsider the constraints on Universal Extra Dimensions (UED) models arising from precision electroweak data. We take into account the subleading contributions from new physics (expressed in terms of the X,Y ... variables), as well as two loop corrections to the Standard Model rho parameter. For the case of one extra dimension, we obtain a lower bound on the inverse compactification scale M = R^{-1} of 600 GeV (at 90% confidence level), with a Higgs mass of 115 GeV. However, in contradiction to recent claims, we find that this constraint is significantly relaxed with increasing Higgs mass, allowing for compactification scales as low as 300 GeV. LEP II data does not significantly affect these results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا