No Arabic abstract
We reconsider the constraints on Universal Extra Dimensions (UED) models arising from precision electroweak data. We take into account the subleading contributions from new physics (expressed in terms of the X,Y ... variables), as well as two loop corrections to the Standard Model rho parameter. For the case of one extra dimension, we obtain a lower bound on the inverse compactification scale M = R^{-1} of 600 GeV (at 90% confidence level), with a Higgs mass of 115 GeV. However, in contradiction to recent claims, we find that this constraint is significantly relaxed with increasing Higgs mass, allowing for compactification scales as low as 300 GeV. LEP II data does not significantly affect these results.
We consider the performance of the ATLAS and CMS searches for events with missing transverse energy, which were originally motivated by supersymmetry, in constraining extensions of the Standard Model based on extra dimensions, in which the mass differences between recurrences at the same level are generically smaller than the mass hierarchies in typical supersymmetric models. We consider first a toy model with pair-production of a single vector-like quark U1 decaying into a spin-zero stable particle A1 and jet, exploring the sensitivity of the CMS alphaT and ATLAS meff analysis to U1 mass and the U1-A1 mass difference. For this purpose we u
Warped extra dimensions allow a novel way of solving the hierarchy problem, with all fundamental mass parameters of the theory naturally of the order of the Planck scale. The observable value of the Higgs vacuum expectation value is red-shifted, due to the localization of the Higgs field in the extra dimension. It has been recently observed that, when the gauge fields propagate in the bulk, unification of the gauge couplings may be achieved. Moreover, the propagation of fermions in the bulk allows for a simple solution to potentially dangerous proton decay problems. However, bulk gauge fields and fermions pose a phenomenological challenge, since they tend to induce large corrections to the precision electroweak observables. In this article, we study in detail the effect of gauge and fermion fields propagating in the bulk in the presence of gauge brane kinetic terms compatible with gauge coupling unification, and we present ways of obtaining a consistent description of experimental data, while allowing values of the first Kaluza Klein mode masses of the order of a few TeV.
We review the six dimensional universal extra dimension models compactified on the sphere $S^2$, the orbifold $S^2/Z_2$, and the projective sphere, which are based on the spontaneous compactification mechanism on the sphere. In particular, we spell out the application of the Newman-Penrose eth-formalism on these models with some technical details on the derivation of the Kaluza-Klein modes and their interactions, and revisit the problem in the existence of the zero mode of $U(1)_X$ additional gauge boson required for the spontaneous compactification. We also explain the theoretical background on the vacuum stability argument for the upper bound on the ultraviolet cutoff scale.
We reconsider cosmological constraints on extra dimension theories from the excess production of Kaluza-Klein gravitons. We point out that, if the normalcy temperature is above 1 GeV, then graviton states produced at this temperature will decay early enough that they do not affect the present day dark matter density, or the diffuse gamma ray background. We rederive the relevant cosmological constraints for this scenario.
The minimal Universal Extra Dimension scenario is highly constrained owing to opposing constraints from the observed relic density on the one hand, and the non-observation of new states at the LHC on the other. Simple extensions in five-dimensions can only postpone the inevitable. Here, we propose a six-dimensional alternative with the key feature being that the SM quarks and leptons are localized on orthogonal directions whereas gauge bosons traverse the entire bulk. Several different realizations of electroweak symmetry breaking are possible, while maintaining agreement with low energy observables. This model is not only consistent with all the current constraints opposing the minimal Universal Extra Dimension scenario but also allows for a multi-TeV dark matter particle without the need for any fine-tuning. In addition, it promises a plethora of new signatures at the LHC and other future experiments.