We apply renormalisation-group methods to two-body scattering by a combination of known long-range and unknown short-range potentials. We impose a cut-off in the basis of distorted waves of the long-range potential and identify possible fixed points of the short-range potential as this cut-off is lowered to zero. The expansions around these fixed points define the power countings for the corresponding effective field theories. Expansions around nontrivial fixed points are shown to correspond to distorted-wa
We apply the renormalisation-group to two-body scattering by a combination of known long-range and unknown short-range forces. A crucial feature is that the low-energy effective theory is regulated by applying a cut-off in the basis of distorted waves for the long range potential. We illustrate the method by applying it to scattering in the presence of a repulsive 1/r^2 potential. We find a trivial fixed point, describing systems with weak short-range interactions, and a unstable fixed point. The expansion around the latter corresponds to a distorted-wave effective-range expansion.
We outline a separable matrix ansatz for the potentials in effective field theories of nonrelativistic two-body systems with short-range interactions. We use this ansatz to construct new fixed points of the renormalisation-group equation for these potentials. New fixed points indicate a much richer structure than previously recognized in the RG flows of simple short-range potentials.
We analyze the electromagnetic scattering of massive particles with and without spin and, using the techniques of effective field theory, we isolate the leading long distance effects beyond one photon exchange, both classical and quantum mechanical. Spin-independent and spin-dependent effects are isolated and shown to have a universal structure.
Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.
It is analyzed the quantum mechanical scattering off a topological defect (such as a Dirac monopole) as well as a Yukawa-like potential(s) representing the typical effects of strong interactions. This system, due to the presence of a short-range potential, can be analyzed using the powerful technique of the complex angular momenta which, so far, has not been employed in the presence of monopoles (nor of other topological solitons). Due to the fact that spatial spherical symmetry is achieved only up to internal rotations, the partial wave expansion becomes very similar to the Jacob-Wick helicity amplitudes for particles with spin. However, since the angular-momentum operator has an extra internal contribution, fixed cuts in the complex angular momentum plane appear. Correspondingly, the background integral in the Regge formula does not decrease for large values of cos(Theta) (namely, large values of the Mandelstam variable s). Hence, the experimental observation of this kind of behavior could be a direct signal of non-trivial topological structures in strong interactions. The possible relations of these results with the soft Pomeron are shortly analyzed.
Thomas Barford
,Michael C. Birse
.
(2002)
.
"A renormalisation group approach to two-body scattering in the presence of long-range forces"
.
Michael C. Birse
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا