The electromagnetic corrections to the low energy scattering amplitude involving charged pions only are investigated at leading and next-to-leading orders in the two-flavour chiral expansion. As an application, the corresponding variation in the strong $2S-2P$ level shift is evaluated. The relative variation is of the order of 5%.
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion--Sigma--Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magnetic transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. One obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).
We use chiral perturbation theory to evaluate the scattering amplitude for the process Pi^+ K^- to Pi^+ K^- at leading and next-to-leading orders in the chiral counting and in the presence of isospin breaking effects. We also discuss the influence of the latter on the combination of the S-wave Pi K scattering lengths which is relevant for the 2S - 2P energy levels shift of K Pi atoms.
The Virtual Compton scattering (VCS) process at low energies explores the electromagnetic structure of the proton in terms of generalized polarizabilities (GPs). In the one-photon exchange approximation, VCS can be accessed with exclusive photon production reactions with electron or positron beams. The extraction of the GPs from VCS with electron beam has seen substantial progress over the past two decades. Nonetheless, a consistent picture of the GPs from low to higher scales demands further investigations. Complementary measurements with positron beams offer an unique possibility, and we present an impact study of such experimental program.
The production of jets in charged current deep inelastic scattering (CC DIS) constitutes a class of observables that can be used to simultaneously test perturbative predictions for the strong and the electroweak sectors of the Standard Model. We compute both single jet and di-jet production in CC DIS for the first time at next-to-next-to-leading order (NNLO) in the strong coupling. Our computation is fully differential in the jet and lepton kinematics, and we observe a substantial reduction of scale variation uncertainties in the NNLO predictions compared to next-to-leading order (NLO). Our calculation will prove essential for full exploitation of data at a possible future LHeC collider.
Processes of electron-positron annihilation into charged pions and kaons are considered. Radiative corrections are taken into account exactly in the first order and within the leading logarithmic approximation in higher orders. A combined approach for accounting exact calculations and electron structure functions is used. An accuracy of the calculation can be estimated about 0.2%.