Do you want to publish a course? Click here

The CDF-II Online Silicon Vertex Tracker

82   0   0.0 ( 0 )
 Added by Simone Donati
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

The Online Silicon Vertex Tracker is the new CDF-II level 2 trigger processor designed to reconstruct 2-D tracks within the Silicon Vertex Detector with high speed and accuracy. By performing a precise measurement of impact parameters the SVT allows tagging online B events which typically show displaced secondary vertices. Physics simulations show that this will greatly enhance the CDF-II B-physics capability. The SVT has been fully assembled and operational since the beginning of Tevatron RunII in April 2001. In this paper we briefly review the SVT design and physics motivation and then describe its performance during the early phase (April-October 2001) of run II.

rate research

Read More

The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilabs Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDFs physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.
This paper describes the mechanical design, the readout chain, the production, testing and the installation of the Silicon Microstrip Tracker of the D0 experiment at the Fermilab Tevatron collider. In addition, description of the performance of the detector during the experiment data collection between 2001 and 2010 is provided.
56 - C. Pagliarone 2003
The study of processes containing tau leptons in the final state will play an important role at Tevatron Run II. Such final states will be relevant both for electroweak studies and measurements as well as in searches for physics beyond the Standard Model. The present paper discuss the physics opportunities and challenges related to the implementation of new set of triggers able to select events containing tau candidates in the final state. We illustrate, in particular, the physics capabilities for a variety of new physics scenarios such as supersymmetry (SUSY), SUSY with R-parity violation, with Bilinear parity violation or models with the violation of lepton flavor. Finally, we present the first Run II results obtained using some of the described tau triggers.
In order to fully exploit the physics potential of the future high energy e+e- linear collider, a Vertex Tracker able to provide particle track extrapolation with very high resolution is needed. Hybrid Si pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells has been developed to improve the single point resolution. Results of the characterisation of the first processed prototypes by electrostatic measurements and charge collection studies are discussed.
76 - J. H. Han , H. S. Ahn , J. B. Bae 2020
When testing and calibrating particle detectors in a test beam, accurate tracking information independent of the detector being tested is extremely useful during the offline analysis of the data. A general-purpose Silicon Beam Tracker (SBT) was constructed with an active area of 32.0 x 32.0 mm2 to provide this capability for the beam calibration of the Cosmic Ray Energetics And Mass (CREAM) calorimeter. The tracker consists of two modules, each comprised of two orthogonal layers of 380 {mu}m thick silicon strip sensors. In one module each layer is a 64-channel AC-coupled single-sided silicon strip detector (SSD) with a 0.5 mm pitch. In the other, each layer is a 32-channel DC-coupled single-sided SSD with a 1.0 mm pitch. The signals from the 4 layers are read out using modified CREAM hodoscope front-end electronics with a USB 2.0 interface board to a Linux DAQ PC. In this paper, we present the construction of the SBT, along with its performance in radioactive source tests and in a CERN beam test in October 2006.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا