New data on the anomalous magnetic moment of the muon together with the b->s gamma decay rate and Higgs limits are considered within the supergravity inspired constrained minimal supersymmetric model. We perform a global statistical chi2 analysis of these data and show that the allowed region of parameter space is bounded from below by the Higgs limit, which depends on the trilinear coupling and from above by the anomalous magnetic moment.
New data on the anomalous magnetic moment a_mu of the muon together with the b->s gamma decay rate are considered within the supergravity inspired constrained minimal supersymmetric model. We perform a global statistical chi^2 analysis of these data and show that the allowed region of parameter space is bounded from below by the Higgs limit, which depends on the trilinear coupling and from above by the anomalous magnetic moment a_mu. The newest b->s gamma data deviate 1.7 sigma from recent SM calculations and prefer a similar parameter region as the 2.6 sigma deviation from a_mu.
We present a MSSM study of the b -> s gamma decay in a Minimal Flavor Violating (MFV) framework, where the form of the soft SUSY breaking terms is determined by the Standard Model Yukawa couplings. In particular, we address the role of gluino contributions, which are set to zero in most studies of the MFV MSSM. Gluino contributions can play an important role in the MFV MSSM whenever mu * tan(beta) is large. In fact, similarly to chargino contributions, gluino contributions are tan(beta) enhanced and can easily dominate charged Higgs contributions for large values of tan(beta). Even though each of the separate contributions to b -> s gamma can be sizeable by itself, surprisingly no absolute lower bound can be placed on any of the relevant SUSY masses, since patterns of partial cancellations among the three competing contributions (Higgs, chargino and gluino) can occur throughout the MSSM parameter space.
We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an $A_4 times Z_5$ family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass $m_0$ and three right-handed soft masses $m_1,m_2,m_3$, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon $(g-2)_mu$. Since about two decades, $(g-2)_mu$ suffers a puzzling about 3$,sigma$ excess of the experimentally measured value over the theoretical prediction, which our model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potentially explain di-lepton excesses observed by CMS and ATLAS.
We study the anomalous magnetic moment of the muon, a_mu, and lepton flavor violating decay mu -> e gamma in TeV scale B-L extension of the Standard Model (SM) with inverse seesaw mechanism. We show that the B-L contributions to a_mu are severely constrained, therefore the SM contribution remains intact. We also emphasize that the current experimental limit of BR(mu -> e gamma) can be satisfied for a wide range of parameter space and it can be within the reach of MEG experiment.
The CP violating two-Higgs doublet model of type-X may enhance significantly the electric and magnetic moment of leptons through two-loop Barr-Zee diagrams. We analyze the general parameter space of the type-X 2HDM consistent with the muon $g-2$ and the electron EDM measurements to show how strongly the CP violating parameter is constrained in the region explaining the muon $ g-2$ anomaly.
W. de Boer
,M. Huber
,C. Sander
.
(2001)
.
"A gobal fit to the anomalous magnetic moment, Higgs limit and b->s gamma in the constrained MSSM"
.
Wim deBoer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا