Motivated by higher-dimensional theories that predict new effects, we tested the gravitational 1/r^2 law at separations ranging down to 218 micrometers using a 10-fold symmetric torsion pendulum and a rotating 10-fold symmetric attractor. We improved previous short-range constraints by up to a factor of 1000 and find no deviations from Newtonian physics.
Motivated by a variety of theories that predict new effects, we tested the gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using two different 10-fold azimuthally symmetric torsion pendulums and rotating 10-fold symmetric attractors. Our work improves upon other experiments by up to a factor of about 100. We found no deviation from Newtonian physics at the 95% confidence level and interpret these results as constraints on extensions of the Standard Model that predict Yukawa or power-law forces. We set a constraint on the largest single extra dimension (assuming toroidal compactification and that one extra dimension is significantly larger than all the others) of R <= 160 microns, and on two equal-sized large extra dimensions of R <= 130 microns. Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of large extra dimensions. We also provide new constraints on power-law potentials V(r)propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of pseudoscalars with m <= 10 meV/c^2.
Sub-mm tests of the gravitational inverse-square law are interesting from several quite different perspectives. This paper discusses work by the Eot-Wash group performed since the publication of our initial result in February 2001. We find no evidence for short-range Yukawa interactions. Our results provide an upper limit of 200 micrometers on the size of the largest ``extra dimension, and for the unification scenario with 2 large extra dimensions, set an upper limit of 150 micrometers on the size of those dimensions.
A search for sidereal variations in the non-Newtonian force between two tungsten plates separated at millimeter ranges sets experimental limits on Lorentz invariance violation involving quadratic couplings of Riemann curvature. We show that the Lorentz invariance violation force between two finite flat plates is dominated by the edge effects, which includes a suppression effect leading to lower limits than previous rough estimates. From this search, we determine the current best constraints of the Lorentz invariance violating coefficients at a level of $10^{-8}$ m$^{2}$.
We use data from our recent search for violations of the gravitational inverse-square law to constrain dilaton, radion and chameleon exchange forces as well as arbitrary vector or scalar interactions. We test the interpretation of the PVLAS effect and a conjectured ``fat graviton scenario and constrain the $gamma_5$ couplings of pseuodscalar bosons and arbitrary power-law interactions.
Neutrino oscillations successfully explain the flavor transitions observed in neutrinos produced in natural sources like the center of the sun and the earth atmosphere, and also from man-made sources like reactors and accelerators. These oscillations are driven by two mass-squared differences, solar and atmospheric, at the sub-eV scale. However, longstanding anomalies at short-baselines might imply the existence of new oscillation frequencies at the eV-scale and the possibility of this sterile state(s) to mix with the three active neutrinos. One of the many future neutrino programs that are expected to provide a final word on this issue is the Short-Baseline Neutrino Program (SBN) at FERMILAB. In this letter, we consider a specific model of Large Extra Dimensions (LED) which provides interesting signatures of oscillation of extra sterile states. We started re-creating sensitivity analyses for sterile neutrinos in the 3+1 scenario, previously done by the SBN collaboration, by simulating neutrino events in the three SBN detectors from both muon neutrino disappearance and electron neutrino appearance. Then, we implemented neutrino oscillations as predicted in the LED model and also we have performed sensitivity analysis to the LED parameters. Finally, we studied the SBN power of discriminating between the two models, the 3+1 and the LED. We have found that SBN is sensitive to the oscillations predicted in the LED model and have the potential to constrain the LED parameter space better than any other oscillation experiment, for $m_{1}^D<0.1,text{eV}$. In case SBN observes a departure from the three active neutrino framework, it also has the power of discriminating between sterile oscillations predicted in the 3+1 framework and the LED ones.
C. D. Hoyle
,U. Schmidt
,B. R. Heckel
.
(2000)
.
"Sub-millimeter tests of the gravitational inverse-square law: A search for large extra dimensions"
.
Eric G. Adelberger
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا