Do you want to publish a course? Click here

Meson-Meson Scattering in Lattice QED_2+1

222   0   0.0 ( 0 )
 Added by ul
 Publication date 1992
  fields
and research's language is English
 Authors H. R. Fiebig




Ask ChatGPT about the research

Scattering phase shifts of a meson-meson system in staggered 3-dimensional lattice QED are computed. The main task of the simulation is to obtain a discrete set of two-body energy levels. These are extracted from a 4-point time correlation matrix and then used to obtain scattering phase shifts. The results for the l=0 and l=2 partial waves are consistent with short- range repulsion and intermediate-range attraction of the residual meson- meson interaction.



rate research

Read More

We summarize our lattice QCD determinations of the pion-pion, pion-kaon and kaon-kaon s-wave scattering lengths at maximal isospin with a particular focus on the extrapolation to the physical point and the usage of next-to-leading order chiral perturbation theory to do so. We employ data at three values of the lattice spacing and pion masses ranging from around 230 MeV to around 450 MeV, applying Lueschers finite volume method to compute the scattering lengths. We find that leading order chiral perturbation theory is surprisingly close to our data even in the kaon-kaon case for our entire range of pion masses.
The scalar meson $D_{s0}^*(2317)$ is found 37(17)MeV below DK threshold in a lattice simulation of the $J^P=0^+$ channel using, for the first time, both DK as well as $bar sc$ interpolating fields. The simulation is done on $N_f=2+1$ gauge configurations with $m_pisimeq 156 $MeV, and the resulting $M_{D_{s0}^*}-tfrac{1}{4}(M_{D_s}+3M_{D_s^*})=266(16)$ MeV is close to the experimental value 241.5(0.8)MeV. The energy level related to the scalar meson is accompanied by additional discrete levels due to DK scattering states. The levels near threshold lead to the negative DK scattering length $a_0=-1.33(20)$ fm that indicates the presence of a state below threshold.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters, the effective $rhotopipi$ coupling constant and the resonance mass, are estimated from the $P$-wave scattering phase shift for the isospin I=1 two-pion system. The finite size formulas are employed to calculate the phase shift from the energy on the lattice. Our calculations are carried out at two quark masses, $m_pi=410,{rm MeV}$ ($m_pi/m_rho=0.46$) and $m_pi=300,{rm MeV}$ ($m_pi/m_rho=0.35$), on a $32^3times 64$ ($La=2.9,{rm fm}$) lattice at the lattice spacing $a=0.091,{rm fm}$. We compare our results at these two quark masses with those given in the previous works using $N_f=2$ full QCD configurations and the experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا