We calculate one-loop renormalization factors of generic DeltaS=2 four-quark operators for domain-wall QCD with the plaquette gauge action and the Iwasaki gauge action. The renormalization factors are presented in the modified minimal subtraction (MS-bar) scheme with the naive dimensional regularization. As an important application we show how to construct the renormalization factors for the operators contributing to K^0-K^0bar mixing in the supersymmetric models with the use of our results.
We present a study of $B$-parameters for generic $Delta S=2$ four-quark operators in domain wall QCD. Our calculation covers all the $B$-parameters required to study the neutral kaon mixing in the standard model (SM) and beyond it. We evaluate one-loop renormalization factors of the operators employing the plaquette and Iwasaki gauge actions. Numerical simulations are carried out in quenched QCD with both gauge actions on $16^3times 32times 16$ and $24^3times 32times 16$ at the lattice spacing $1/aapprox 2$GeV. We investigate the relative magnitudes of the non-SM $B$-parameters to the SM one, which are compared with the previous results obtained with the overlap and the clover quark actions.
We calculate one-loop renormalization factors of three-quark operators, which appear in the low energy effective Lagrangian of the nucleon decay, for $O(a)$-improved quark action and gauge action including six-link loops. This calculation is required to predict the hadronic nucleon decay matrix elements in the continuum regularization scheme using lattice QCD. We present detailed numerical results of the one-loop coefficients for general values of the clover coefficients employing the several improved gauge actions in the Symanzik approach and in the Wilsons renormalization group approach. The magnitudes of the one-loop coefficients for the improved gauge actions show sizable reduction compared to those for the plaquette action.
We present non-perturbative renormalization factors for $Delta S=2$ four-quark operators in quenched domain-wall QCD using the Schroedinger functional method. Non-perturbative renormalization factor for $B_K$ is evaluated at hadronic scale. Combined with the non-perturbative RG running obtained by the Alpha collaboration, our result yields renormalization factor which converts lattice bare $B_K$ to the renormalization group invariant one. We apply the renormalization factor to bare $B_K$ previously obtained by the CP-PACS collaboration with the quenched domain-wall QCD(DWQCD). We compare our result with previous ones obtained by perturbative renormalization factors, different renormalization schemes or different quark actions. We also show that chiral symmetry breaking effects in the renormalization factor are numerically small.
Renormalization constants of vector ($Z_V$) and axial-vector ($Z_A$) currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functional method. Non-perturbative values of $Z_V$ and $Z_A$ turn out to be smaller than the one-loop perturbative values by $O(10%)$ at $a^{-1}approx 1$ GeV. A sizable scaling violation of meson decay constants $f_pi$ and $f_rho$ observed with the one-loop renormalization factors remains even with non-perturbative renormalization.
Renormalization constants ($Z$-factors) of vector and axial-vector currents are determined non-perturbatively in quenched QCD for a renormalization group improved gauge action and a tadpole improved clover quark action using the Schrodinger functional method. Non-perturbative values of $Z$-factors turn out to be smaller than one-loop perturbative values by $O(15%)$ at lattice spacing of $a^{-1}approx$ 1 GeV. The pseudoscalar and vector meson decay constants calculated with the non-perturbative $Z$-factors show a much better scaling behavior compared to previous results obtained with tadpole improved one-loop $Z$-factors. In particular, the non-perturbative $Z$-factors normalized at infinite physical volume show that scaling violation of the decay constants are within about 10% up to the lattice spacing $a^{-1}sim 1$ GeV. The continuum estimates obtained from data in the range $a^{-1}=$ 1 -- 2 GeV agree with those determined from finer lattices ($a^{-1}sim 2-4$ GeV) with the standard action.