We present excited meson masses from quenched calculations using chirally improved (CI) quarks at pion masses down to 350 MeV. The salient features of our analysis are the use of a matrix of correlators from various source and sink operators and a basis which includes quark sources with different spatial widths, thereby improving overlap with states exhibiting radial excitations.
The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.
We simulate two dynamical, mass degenerate light quarks on 16^3x32 lattices with a spatial extent of 2.4 fm using the Chirally Improved Dirac operator. The simulation method, the implementation of the action and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.
We present recent results of our dynamical simulations with Chirally Improved fermions and report on new developments in the determination of excited light-quark meson states using interpolators constructed by applying covariant derivatives on Jacobi-smeared quark sources within the framework of the variational method.
We present our latest results for the excitations of static-light mesons on both quenched and unquenched lattices, where the light quarks are simulated using the chirally improved (CI) lattice Dirac operator.
We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.