Do you want to publish a course? Click here

Momentum dependence of the N to Delta transition form factors

131   0   0.0 ( 0 )
 Publication date 2004
  fields
and research's language is English
 Authors C. Alexandrou




Ask ChatGPT about the research

We present a new method to determine the momentum dependence of the N to Delta transition form factors and demonstrate its effectiveness in the quenched theory at $beta=6.0$ on a $32^3 times 64$ lattice. We address a number of technical issues such as the optimal combination of matrix elements and the simultaneous overconstrained analysis of all lattice vector momenta contributing to a given momentum transfer squared, $Q^2$.

rate research

Read More

104 - C. Alexandrou 2003
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are evaluated both in quenched lattice QCD at $beta=6.0$ and using two dynamical Wilson fermions simulated at $beta=5.6$. The dipole transition form factor is accurately determined at several values of momentum transfer. On the lattices studied in this work, the electric quadrupole amplitude is found to be non-zero yielding a negative value for the ratio, $ R_{EM}$, of electric quadrupole to magnetic dipole amplitudes at three values of momentum transfer.
113 - C. Alexandrou 2004
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition gamma Nto Delta are calculated in quenched lattice QCD at beta=6.0 with Wilson fermions. Using a new method combining an optimal combination of interpolating fields for the $Delta$ and an overconstrained analysis, we obtain statistically accurate results for the dipole form factor and for the ratios of the electric and Coulomb quadrupole amplitudes to the magnetic dipole amplitude, R_{EM} and R_{SM}, up to momentum transfer squared 1.5 GeV^2. We show for the first time using lattice QCD that both R_{EM} and R_{SM} are non-zero and negative, in qualitative agreement with experiment and indicating the presence of deformation in the N- Delta system.
158 - A.J. Buchmann 2004
The C2/M1 ratio of the electromagnetic N->Delta(1232) transition, which is important for determining the geometric shape of the nucleon, is shown to be related to the neutron elastic form factor ratio G_C^n/G_M^n. The proposed relation holds with good accuracy for the entire range of momentum transfers where data are available.
324 - C. Alexandrou 2003
Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are presented both in quenched QCD and with two flavours of degenerate dynamical quarks.
144 - Dru B. Renner 2012
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen percent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا