Do you want to publish a course? Click here

$gamma N to Delta$ transition form factors in Quenched and $N_F=2$ QCD

325   0   0.0 ( 0 )
 Publication date 2003
  fields
and research's language is English
 Authors C. Alexandrou




Ask ChatGPT about the research

Calculations of the magnetic dipole, electric quadrupole and Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are presented both in quenched QCD and with two flavours of degenerate dynamical quarks.



rate research

Read More

104 - C. Alexandrou 2003
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are evaluated both in quenched lattice QCD at $beta=6.0$ and using two dynamical Wilson fermions simulated at $beta=5.6$. The dipole transition form factor is accurately determined at several values of momentum transfer. On the lattices studied in this work, the electric quadrupole amplitude is found to be non-zero yielding a negative value for the ratio, $ R_{EM}$, of electric quadrupole to magnetic dipole amplitudes at three values of momentum transfer.
113 - C. Alexandrou 2004
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition gamma Nto Delta are calculated in quenched lattice QCD at beta=6.0 with Wilson fermions. Using a new method combining an optimal combination of interpolating fields for the $Delta$ and an overconstrained analysis, we obtain statistically accurate results for the dipole form factor and for the ratios of the electric and Coulomb quadrupole amplitudes to the magnetic dipole amplitude, R_{EM} and R_{SM}, up to momentum transfer squared 1.5 GeV^2. We show for the first time using lattice QCD that both R_{EM} and R_{SM} are non-zero and negative, in qualitative agreement with experiment and indicating the presence of deformation in the N- Delta system.
149 - C. Alexandrou 2007
The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form factors are evaluated for the first time in full QCD to sufficient accuracy to exclude a zero value, which is taken as a signal for deformation in the nucleon-Delta system. For the Coulomb quadrupole form factor the unquenched results show deviations from the quenched results at low q^2 bringing dynamical lattice results closer to experiment, thereby confirming the importance of pion cloud contributions on this quantity.
130 - C. Alexandrou 2004
We present a new method to determine the momentum dependence of the N to Delta transition form factors and demonstrate its effectiveness in the quenched theory at $beta=6.0$ on a $32^3 times 64$ lattice. We address a number of technical issues such as the optimal combination of matrix elements and the simultaneous overconstrained analysis of all lattice vector momenta contributing to a given momentum transfer squared, $Q^2$.
158 - A.J. Buchmann 2004
The C2/M1 ratio of the electromagnetic N->Delta(1232) transition, which is important for determining the geometric shape of the nucleon, is shown to be related to the neutron elastic form factor ratio G_C^n/G_M^n. The proposed relation holds with good accuracy for the entire range of momentum transfers where data are available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا