Do you want to publish a course? Click here

Hadron Spectrum for Quenched Domain-Wall Fermions with DBW2 Gauge Action

66   0   0.0 ( 0 )
 Added by Yasumichi Aoki
 Publication date 2001
  fields
and research's language is English




Ask ChatGPT about the research

We investigate basic physical quantities for quenched simulation with domain-wall fermions and the DBW2 gauge action. Masses and decay constant of pseudoscalar mesons are measured. Scaling properties are tested.



rate research

Read More

66 - J.Noaki 2004
We present calculations of the decay constants and kaon B-parameter $B_K$ as the first stage of RBC Collaborations quenched numerical simulations using DBW2 gauge action and domain-wall fermions. Some of potential systematic errors and consistency to previous works are discussed.
611 - Shoichi Sasaki 2009
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different lattice sizes L^3 x T=24^3 x 32, 16^3 x 32 and 12^3 x 32 with a lattice cutoff of 1/a = 1.3 GeV and light quark masses down to about 1/4 the strange quark mass (m_{pi} = 390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6 fm)^3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q^2 = 0.1 GeV^2) are accessible. The q^2-dependences of form factors in the low q^2 region are examined. It is found that the vector, induced tensor, axial-vector form factors are well described by the dipole form, while the induced pseudo-scalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling g_A/g_V=F_A(0)/F_V(0)=1.219(38) and the pseudo-scalar coupling g_P=m_{mu}F_P(0.88m_{mu}^2)=8.15(54), where the errors are statistical erros only. These values agree with experimental values from neutron beta decay and muon capture on the proton. However, the root mean squared radii of the vector, induced tensor and axial-vector underestimate the known experimental values by about 20%. We also calculate the pseudo-scalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.
61 - T. Blum , P. Chen , N. Christ 2000
Quenched QCD simulations on three volumes, $8^3 times$, $12^3 times$ and $16^3 times 32$ and three couplings, $beta=5.7$, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass ($mres$) whose size decreases as the separation between the domain walls ($L_s$) is increased. However, at stronger couplings much larger values of $L_s$ are required to achieve a given physical value of $mres$. For $beta=6.0$ and $L_s=16$, we find $mres/m_s=0.033(3)$, while for $beta=5.7$, and $L_s=48$, $mres/m_s=0.074(5)$, where $m_s$ is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of $m_pi^2$ in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in $f_pi$ over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.
We report on our on-going project to calculate the nucleon decay matrix elements with domain-wall fermions. Operator mixing is discussed employing a non-perturbative renormalization. Bare matrix elements of all the possible decay modes induced by the dimension-six operators are calculated with the direct method, which are compared with the indirect calculation using chiral perturbation theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا