No Arabic abstract
We report on our on-going project to calculate the nucleon decay matrix elements with domain-wall fermions. Operator mixing is discussed employing a non-perturbative renormalization. Bare matrix elements of all the possible decay modes induced by the dimension-six operators are calculated with the direct method, which are compared with the indirect calculation using chiral perturbation theory.
We report on the nucleon decay matrix elements with domain-wall fermions in quenched approximation. Results from direct and indirect method are compared with a focus on the process of a proton decaying to a pion and a lepton. We discuss the renormalization necessary for the matching to the continuum theory. Preliminary results for the renormalized chiral lagrangian parameters are presented.
Hadronic matrix elements of operators relevant to nucleon decay in grand unified theories are calculated numerically using lattice QCD. In this context, the domain-wall fermion formulation, combined with non-perturbative renormalization, is used for the first time. These techniques bring reduction of a large fraction of the systematic error from the finite lattice spacing. Our main effort is devoted to a calculation performed in the quenched approximation, where the direct calculation of the nucleon to pseudoscalar matrix elements, as well as the indirect estimate of them from the nucleon to vacuum matrix elements, are performed. First results, using two flavors of dynamical domain-wall quarks for the nucleon to vacuum matrix elements are also presented to address the systematic error of quenching, which appears to be small compared to the other errors. Our results suggest that the representative value for the low energy constants from the nucleon to vacuum matrix elements are given as |alpha| simeq |beta| simeq 0.01 GeV^3. For a more reliable estimate of the physical low energy matrix elements, it is better to use the relevant form factors calculated in the direct method. The direct method tends to give smaller value of the form factors, compared to the indirect one, thus enhancing the proton life-time; indeed for the pi^0 final state the difference between the two methods is quite appreciable.
We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector and axialvector currents: the vector, induced tensor, axialvector, and induced pseudoscalar form factors. The calculation is carried out with the gauge configurations generated with N_f=2+1 dynamical domain wall fermions and Iwasaki gauge actions at beta = 2.13, corresponding to a cutoff 1/a = 1.73 GeV, and a spatial volume of (2.7 fm)^3. The up and down quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate the form factors in the range of momentum transfers, 0.2 < q^2 < 0.75 GeV^2. The vector and induced tensor form factors are well described by the conventional dipole forms and result in significant underestimation of the Dirac and Pauli mean-squared radii and the anomalous magnetic moment compared to the respective experimental values. We show that the axialvector form factor is significantly affected by the finite spatial volume of the lattice. In particular in the axial charge, g_A/g_V, the finite volume effect scales with a single dimensionless quantity, m_pi L, the product of the calculated pion mass and the spatial lattice extent. Our results indicate that for this quantity, m_pi L > 6 is required to ensure that finite volume effects are below 1%.
We present a quenched lattice calculation of the weak nucleon form factors: vector (F_V(q^2)), induced tensor (F_T(q^2)), axial-vector (F_A(q^2)) and induced pseudo-scalar (F_P(q^2)) form factors. Our simulations are performed on three different lattice sizes L^3 x T=24^3 x 32, 16^3 x 32 and 12^3 x 32 with a lattice cutoff of 1/a = 1.3 GeV and light quark masses down to about 1/4 the strange quark mass (m_{pi} = 390 MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6 fm)^3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q^2 = 0.1 GeV^2) are accessible. The q^2-dependences of form factors in the low q^2 region are examined. It is found that the vector, induced tensor, axial-vector form factors are well described by the dipole form, while the induced pseudo-scalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling g_A/g_V=F_A(0)/F_V(0)=1.219(38) and the pseudo-scalar coupling g_P=m_{mu}F_P(0.88m_{mu}^2)=8.15(54), where the errors are statistical erros only. These values agree with experimental values from neutron beta decay and muon capture on the proton. However, the root mean squared radii of the vector, induced tensor and axial-vector underestimate the known experimental values by about 20%. We also calculate the pseudo-scalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.