No Arabic abstract
First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPFs from the imaginary-time correlation functions numerically obtained by the Monte Carlo method. Three important aspects of MEM are (i) it does not require a priori assumptions or parametrizations of SPFs, (ii) for given data, a unique solution is obtained if it exists, and (iii) the statistical significance of the solution can be quantitatively analyzed. The ability of MEM is explicitly demonstrated by using mock data as well as lattice QCD data. When applied to lattice data, MEM correctly reproduces the low-energy resonances and shows the existence of high-energy continuum in hadronic correlation functions. This opens up various possibilities for studying hadronic properties in QCD beyond the conventional way of analyzing the lattice data. Future problems to be studied by MEM in lattice QCD are also summarized.
We study the mass spectra of excited baryons with the use of the lattice QCD simulations. We focus our attention on the problem of the level ordering between the positive-parity excited state N(1440) (the Roper resonance) and the negative-parity excited state N^*(1535). Nearly perfect parity projection is accomplished by combining the quark propagators with periodic and anti-periodic boundary conditions in the temporal direction. Then we extract the spectral functions from the lattice data by utilizing the maximum entropy method. We observe that the masses of the N and N^* states are close for wide range of the quark masses (M_pi=0.61-1.22 GeV), which is in contrast to the phenomenological prediction of the quark models. The role of the Wilson doublers in the baryonic spectral functions is also studied.
Finite temperature charmonium spectral functions in the pseudoscalar and vector channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057 fm), with a non-physical pion mass of $m_{pi} approx$ 545 MeV. The highest temperature studied is approximately $1.4 T_c$. Up to this temperature no significant variation of the spectral function is seen in the pseudoscalar channel. The vector channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at omega>0. These results are in accord with previous calculations using the quenched approximation.
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the $overline{rm MS}$ scheme at a scale of $sqrt{2}$ GeV.
We compute charmonium spectral functions in 2-flavour QCD using the maximum entropy method and anisotropic lattices. We find that the S-waves (J/psi and eta_c) survive up to temperatures close to 2T_c, while the P-waves (chi_c0 and chi_c1) melt away below 1.3T_c.
A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and Levy flights, are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem re-emerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.