Do you want to publish a course? Click here

Quantum Spin Formulation of the Principal Chiral Model

49   0   0.0 ( 0 )
 Added by Boris Schlittgen
 Publication date 2000
  fields
and research's language is English




Ask ChatGPT about the research

We formulate the two-dimensional principal chiral model as a quantum spin model, replacing the classical fields by quantum operators acting in a Hilbert space, and introducing an additional, Euclidean time dimension. Using coherent state path integral techniques, we show that in the limit in which a large representation is chosen for the operators, the low energy excitations of the model describe a principal chiral model in three dimensions. By dimensional reduction, the two-dimensional principal chiral model of classical fields is recovered.



rate research

Read More

110 - Werner Kerler 2004
We present a formulation of chiral gauge theories, which admits more general spectra of Dirac operators and reveals considerably more possibilities for the structure of the chiral projections. Our two forms of correlation functions both also apply in the presence of zero modes and for any value of the index. The decomposition of the total set of pairs of bases into equivalence classes is carefully analyzed. Transformation properties are derived.
124 - Werner Kerler 2004
We present a general formulation of chiral gauge theories, which admits Dirac operators with more general spectra, reveals considerably more possibilities for the structure of the chiral projections, and nevertheless allows appropriate realizations. In our analyses we use two forms of the correlation functions which both also apply in the presence of zero modes and for any value of the index. To account properly for the conditions on the bases the concept of equivalence classes of pairs of them is introduced. The behaviors under gauge transformations and under CP transformations are unambiguously derived.
We revisit the issue of worldline formulations for the q-state Potts model and discuss a worldline representation in arbitrary dimensions which also allows for magnetic terms. For vanishing magnetic field we implement a Hodge decomposition for resolving the constraints with dual variables, which in two dimensions implies self-duality as a simple corollary. We present exploratory 2-d Monte Carlo simulations in terms of the worldlines, based on worm algorithms. We study both, vanishing and non-zero magnetic field, and explore q between q = 2 and q = 30, i.e., Potts models with continuous, as well as strong first order transitions.
We construct a tensor network representation of the partition function for the massless Schwinger model on a two dimensional lattice using staggered fermions. The tensor network representation allows us to include a topological term. Using a particular implementation of the tensor renormalization group (HOTRG) we calculate the phase diagram of the theory. For a range of values of the coupling to the topological term $theta$ and the gauge coupling $beta$ we compare with results from hybrid Monte Carlo when possible and find good agreement.
52 - R. De Pietri 2000
The attempt of extending to higher dimensions the matrix model formulation of two-dimensional quantum gravity leads to the consideration of higher rank tensor models. We discuss how these models relate to four dimensional quantum gravity and the precise conditions allowing to associate a four-dimensional simplicial manifold to Feynman diagrams of a rank-four tensor model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا