Do you want to publish a course? Click here

Strange Content of the Nucleon (NuTeV)

67   0   0.0 ( 0 )
 Added by Todd Adams
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

The NuTeV experiment uses neutrino deep-inelastic scattering from separate neutrino and anti-neutrino beams to study the structure of the nucleon. Charged-current production of charm is sensitive to the strange content of the nucleon while neutral-current charm production probes the charm content. Preliminary analyses of both topics are presented along with discussion of possible momentum asymmetry in the strange sea.



rate research

Read More

118 - R. D. Young 2013
The strange quark scalar content plays an important role in both the description of nucleon structure and in the determination of dark matter direct detection cross sections. As a measure of the strange-quark contribution to the nucleon mass, the strange-quark sigma term (sigma_s) provides important insight into the nature of mass generation in QCD. The phenomenological determination of sigma_s exhibits a wide range of variation, with values suggesting that the strange quark contributes anywhere between 0 and more than 30% of the nucleon mass. In the context of dark matter searches, coupled with relatively large Higgs coupling to strangeness, this variation dominates the uncertainty in predicted cross sections for a large class of dark matter models. Here we report on the recent results in lattice QCD, which are now giving a far more precise determination of sigma_s than can be inferred from phenomenology. As a consequence, the lattice determinations of sigma_s can now dramatically reduce the uncertainty in dark matter cross sections associated with the hadronic matrix elements.
We report the measurement of sin2thetaW in neutrino-nucleon deep inelastic scattering from the NuTeV experiment. Using separate neutrino and anti-neutrino beams, NuTeV is able to determine sin2thetaW with low systematic errors by measuring the Paschos-Wolfenstein variable R-minus, a ratio of differences of neutrino and anti-neutrino neutral-current and charged-current cross-sections. NuTeV measures sin2thetaW(on-shell)= 0.2253+/-0.0019(stat)+/-0.0010(syst), which implies a W mass of 80.26+/-0.11 GeV.
83 - A. Bodek , U. K. Yang , T. Adams 2000
We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nub from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. Within 5% the F_2 (PMI) values measured in neutrino and muon scattering are in agreement with the predictions of Next-to-Leading-Order PDFs (using massive charm production schemes), thus resolving the long-standing discrepancy between the two measurements.
217 - A. Bodek , U. K. Yang , T. Adams 2000
We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nubar from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. The F_2 (PMI) values measured in neutrino and muon scattering are in good agreement with the predictions of Next to Leading Order PDFs (using massive charm production schemes), thus resolving the long-standing discrepancy between the two sets of data.
105 - G.P. Zeller , T.Adams , A.Alton 1999
The NuTeV experiment at Fermilab presents a determination of the electroweak mixing angle. High purity, large statistics samples of muon-neutrino and muon-antineutrino events allow the use of the Paschos-Wolfenstein relation. This considerably reduces systematic errors associated with charm production and other sources. With Standard Model assumptions, this measurement of sin2thw indirectly determines the W boson mass to a precision comparable to direct measurements from high energy e+e- and p-pbar colliders. NuTeV measures sin^2theta_W (on-shell) = 0.2253 +/- 0.0019(stat) +/- 0.0010(syst) which implies M_W = 80.26 +/- 0.11 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا