Do you want to publish a course? Click here

Charm Decays Within the Standard Model and Beyond

258   0   0.0 ( 0 )
 Added by Marina Artuso
 Publication date 2005
  fields
and research's language is English
 Authors M. Artuso




Ask ChatGPT about the research

The charm quark has unique properties that make it a very important probe of many facets of the Standard Model. New experimental information on charm decays is becoming available from dedicated experiments at charm factories, and through charm physics programs at the b-factories and hadron machines. In parallel, theorists are working on matrix element calculations based on unquenched lattice QCD, that can be validated by experimental measurements and affect our ultimate knowledge of the quark mixing parameters. Recent predictions are compared with corresponding experimental data and good agreement is found. Charm decays can also provide unique new physics signatures; the status of present searches is reviewed. Finally, charm data relevant for improving beauty decay measurements are presented.



rate research

Read More

88 - Frederic Teubert 2015
In the last 50 years we have seen how an initially ad-hoc and not widely accepted theory of the strong and electroweak interactions (Standard Theory: ST) has correctly predicted the entire accelerator based experimental observations with incredible accuracy (with the important exception of neutrino oscillation experiments). Decays of the ST particles (quarks and leptons), which are rare due to some symmetry of the theory, have played an important role in the formalism of the ST. These rare decays have been powerful tools to search for new particle interactions with the ST particles, which may not necessarily have the same symmetries. In this article, I will describe the indirect search for evidence of new physics (NP) using quark and lepton flavour changing neutral decays, which are highly suppressed within the ST, and constitute strong probes of potential new flavour structures.
We calculate the form factors for the semileptonic decays $B_sto Kell u$ and $Bto Kellell$ with lattice QCD. We work at several lattice spacings and a range of light quark masses, using the MILC 2+1-flavor asqtad ensembles. We use the Fermilab method for the $b$ quark. We obtain chiral-continuum extrapolations for $E_K$ up to $sim1.2$ GeV and then extend to the entire kinematic range with the model-independent $z$ expansion.
41 - Guy Wilkinson 2021
Measurements performed with pairs of charm mesons produced at threshold from the decay of the $psi(3770)$ resonance are of great value in flavour physics. The quantum correlation that exists between the two mesons allows unique access to strong-phase information, which is essential input to flavour-physics studies conducted in other environments. An excellent example from the BESIII collaboration is a recent determination of the strong-phase difference between $D^0$ and $bar{D}^0$ mesons in the decay $D^0 to K^0_Spi^+pi^-$, which has enabled recent measurements to be performed of the $C!P$-violating phase $gamma$ and $D^0-bar{D}^0$ oscillations by the LHCb experiment at CERN. These $psi(3770)$ data, and also those collected just above the thresholds for $D_s^+$ and $Lambda_c^+$ production, can also be exploited in many other ways that are of benefit to flavour-physics studies. These synergies are reviewed, and the need for larger threshold data samples in the near future is emphasised.
Inclusive semileptonic decays of beauty baryons are studied using the heavy quark expansion to ${cal O}(1/m_b^3)$, at leading order in $alpha_s$. The case of a polarized decaying baryon is examined, with reference to $Lambda_b$. An extension of the Standard Model effective Hamiltonian inducing $b to U ell {bar u}_ ell$ transitions ($U=u,,c$ and $ell=e,,mu,,tau$) is considered, which comprises the full set of D=6 semileptonic operators with left-handed neutrinos. The effects of the new operators in several observables are described.
The MiniBooNE Experiment has contributed substantially to beyond standard model searches in the neutrino sector. The experiment was originally designed to test the $Delta m^2$~1 eV$^2$ region of the sterile neutrino hypothesis by observing $ u_e$ ($bar u_e$) charged current quasi-elastic signals from a $ u_mu$ ($bar u_mu$) beam. MiniBooNE observed excesses of $ u_e$ and $bar u_e$-candidate events in neutrino and anti-neutrino mode, respectively. To date, these excesses have not been explained within the neutrino Standard Model ($ u$SM), the Standard Model extended for three massive neutrinos. Confirmation is required by future experiments such as MicroBooNE. MiniBooNE also provided an opportunity for precision studies of Lorentz violation. The results set strict limits for the first time on several parameters of the Standard Model-Extension, the generic formalism for considering Lorentz violation. Most recently, an extension to MiniBooNE running, with a beam tuned in beam-dump mode, is being performed to search for dark sector particles. This review describes these studies, demonstrating that short baseline neutrino experiments are rich environments in new physics searches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا