Do you want to publish a course? Click here

The Trigger System of the ARGO-YBJ detector

181   0   0.0 ( 0 )
 Added by Pino Di Sciascio
 Publication date 2003
  fields
and research's language is English




Ask ChatGPT about the research

The ARGO-YBJ experiment has been designed to detect air shower events over a large size scale and with an energy threshold of a few hundreds GeV. The building blocks of the ARGO-YBJ detector are single-gap Resistive Plate Counters (RPCs). The trigger logic selects the events on the basis of their hit multiplicity. Inclusive triggers as well as dedicated triggers for specific physics channels or calibration purposes have been developed. This paper describes the architecture and the main features of the trigger system.



rate research

Read More

114 - G. Aielli et al. 2008
The ARGO-YBJ experiment has been designed to study the Extensive Air Showers with an energy threshold lower than that of the existing arrays by exploiting the high altitude location(4300 m a.s.l. in Tibet, P.R. China) and the full ground plane coverage. The lower energy limit of the detector (E $sim$ 1 GeV) is reached by the scaler mode technique, i.e. recording the counting rate at fixed time intervals. At these energies, transient signals due to local (e.g. Forbush Decreases) and cosmological (e.g. Gamma Ray Bursts) phenomena are expected as a significant variation of the counting rate compared to the background. In this paper the performance of the ARGO-YBJ detector operating in scaler mode is described and discussed.
The ARGO-YBJ experiment is a full coverage EAS-array installed at the YangBaJing Cosmic Ray Laboratory (4300 m a.s.l., Tibet, P.R. China). We present the results on the angular resolution measured with different methods with the full central carpet. The comparison of experimental results with MC simulations is discussed.
The ARGO-YBJ experiment consists of a RPC carpet to be operated at the Yangbajing laboratory (Tibet, P.R. China), 4300 m a.s.l., and devoted to the detection of showers initiated by photon primaries in the energy range 100 GeV - 20 TeV. The measurement technique, namely the timing on the shower front with a few tens of particles, requires RPC operation with 1 ns time resolution, low strip multiplicity, high efficiency and low single counting rate. We have tested RPCs with many gas mixtures, at sea level, in order to optimize these parameters. The results of this study are reported.
111 - M. Iacovacci 2003
The ARGO-YBJ experiment, currently under construction at the Yangbaijing Laboratory (4300 m a.s.l.), consists of a single layer of about 2000 Resistive Plate Chambers (RPCs) for a total instrumented area of about 6700 m^2. The digital read-out, performed by means of pick-up electrodes 6.7 X 62 cm^2 (strips), allows one to measure the particle number of small size showers. To extend the size range up to the knee region it is necessary to implement the charge read-out of the detector chambers. In order to achieve this goal each RPC has been instrumented with two large size pads of dimensions 140 X 125 cm^2. In this paper the performance of the prototype circuit devoted to the charge read-out is reported.
66 - G. Di Sciascio 2003
In any EAS array, the rejection of events with shower cores outside the detector boundaries is of great importance. A large difference between the true and the reconstructed shower core positions may lead to a systematic miscalculation of some shower characteristics. Moreover, an accurate determination of the shower core position for selected internal events is important to reconstruct the primary direction using conical fits to the shower front, improving the detector angular resolution, or to performe an efficient gamma/hadron discrimination. In this paper we present a procedure able to identify and reject showers with cores outside the ARGO-YBJ carpet boundaries. A comparison of the results for gamma and proton induced showers is reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا