Do you want to publish a course? Click here

Direct neutrino mass search

100   0   0.0 ( 0 )
 Publication date 2002
  fields
and research's language is English




Ask ChatGPT about the research

With the compelling evidence for massive neutrinos from recent neutrino oscillation experiments, one of the most fundamental tasks of particle physics over the next years will be the determination of the absolute mass scale of neutrinos, which has crucial implications for cosmology, astrophysics and particle physics. Neutrino oscillation experiments can measure squared mass differences but not masses. The latter have to be determined in a different way. The direct mass experiments investigate -- besides time-of-flight measurements -- the kinematics of weak decays obtaining information on the neutrino mass without further requirements. Here the tritium beta decay experiments give the most stringent results. The current tritium beta decay experiments at Mainz and Troitsk are reaching their sensitivity limit. The different options for a next generation direct neutrino mass experiment with sub-eV sensitivity are discussed. The KATRIN experiment, which will investigate the tritium beta spectrum with a MAC-E-Filter of 1 eV resolution, is being prepared to reach a sub-eV sensitivity.



rate research

Read More

One of the most important tasks in neutrino physics is to determine the neutrino mass scale to distinguish between hierarchical and degenerate neutrino mass models and to clarify the role of neutrinos as dark matter particles in the universe. The current tritium beta decay experiments at Mainz and Troitsk are reaching their sensitivity limit. The different options for a next generation direct neutrino mass experiment with sub-eV sensitivity are discussed. The KATRIN experiment, which will investigate the tritium beta spectrum with an unprecedented precision, is being prepared to reach a sensitivity of 0.2 eV.
128 - C. Weinheimer 2009
The investigation of the endpoint region of the tritium beta decay spectrum is still the most sensitive direct method to determine the neutrino mass scale. In the nineties and the beginning of this century the tritium beta decay experiments at Mainz and Troitsk have reached a sensitivity on the neutrino mass of 2 eV/c^2 . They were using a new type of high-resolution spectrometer with large sensitivity, the MAC-E-Filter, and were studying the systematics in detail. Currently, the KATRIN experiment is being set up at Forschungszentrum Karlsruhe, Germany. KATRIN will improve the neutrino mass sensitivity by one order of magnitude down to 0.2 eV/c^2, sufficient to cover the degenerate neutrino mass scenarios and the cosmologically relevant neutrino mass range.
We report the results of the second measurement campaign of the Karlsruhe Tritium Neutrino (KATRIN) experiment. KATRIN probes the effective electron anti-neutrino mass, $m_{ u}$, via a high-precision measurement of the tritium $beta$-decay spectrum close to its endpoint at $18.6,mathrm{keV}$. In the second physics run presented here, the source activity was increased by a factor of 3.8 and the background was reduced by $25,%$ with respect to the first campaign. A sensitivity on $m_{ u}$ of $0.7,mathrm{eV/c^2}$ at $90,%$ confidence level (CL) was reached. This is the first sub-eV sensitivity from a direct neutrino-mass experiment. The best fit to the spectral data yields $m_{ u}^2 = (0.26pm0.34),mathrm{eV^4/c^4}$, resulting in an upper limit of $m_{ u}<0.9,mathrm{eV/c^2}$ ($90,%$ CL). By combining this result with the first neutrino mass campaign, we find an upper limit of $m_{ u}<0.8,mathrm{eV/c^2}$ ($90,%$ CL).
The investigation of the oscillation pattern induced by the sterile neutrinos might determine the oscillation parameters, and at the same time, allow to probe CPT symmetry in the leptonic sector through neutrino-antineutrino mass inequality. We propose to use a large scintillation detector like JUNO or LENA to detect electron neutrinos and electron antineutrinos from MCi electron capture or beta decay sources. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the current research plans for JUNO and RENO. Requiring at least 5$sigma$ confidence level and assuming the values of the oscillation parameters indicated by the current global fit, we would be able to detect neutrino-antineutrino mass inequality of the order of 0.5% or larger, which would imply a signal of CPT anomalies.
We investigate a new method to search for keV-scale sterile neutrinos that could account for Dark Matter. Neutrinos trapped in our galaxy could be captured on stable $^{163}$Dy if their mass is greater than 2.83 keV. Two experimental realizations are studied, an integral counting of $^{163}$Ho atoms in dysprosium-rich ores and a real-time measurement of the emerging electron spectrum in a dysprosium-based detector. The capture rates are compared to the solar neutrino and radioactive backgrounds. An integral counting experiment using several kilograms of $^{163}$Dy could reach a sensitivity for the sterile-to-active mixing angle $sin^2theta_{e4}$ of $10^{-5}$ significantly exceeding current laboratory limits. Mixing angles as low as $sin^2theta_{e4} sim 10^{-7}$ / $rm m_{^{163}rm Dy}rm{(ton)}$ could possibly be explored with a real-time experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا