Do you want to publish a course? Click here

The Drift Chambers Of The Nomad Experiment

58   0   0.0 ( 0 )
 Added by Jacques Dumarchez
 Publication date 2001
  fields
and research's language is English
 Authors M. Anfreville




Ask ChatGPT about the research

We present a detailed description of the drift chambers used as an active target and a tracking device in the NOMAD experiment at CERN. The main characteristics of these chambers are a large area, a self supporting structure made of light composite materials and a low cost. A spatial resolution of 150 microns has been achieved with a single hit efficiency of 97%.



rate research

Read More

We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.
57 - R. S. Henderson 2004
To measure the muon decay parameters with high accuracy, we require an array of precision drift detector layers whose relative position is known with very high accuracy. This article describes the design, construction and performance of these detectors in the TWIST (TRIUMF Weak Interaction Symmetry Test) spectrometer.
EPECUR experiment setup is under construction at the beam line 322 of the ITEP proton synchrotron. The experiment requires several large area drift chambers to provide reasonable acceptance and fine pitch proportional chambers for beam particle tracking with total number of electronic channels of about 7000. New compact and cost effective readout system for these gaseous detectors was designed, prototyped and tested in the latest two years based on the modern technologies in analog and digital electronics, as well as in data transfer protocols. Mass production of the proportional chamber electronics is close to the end, while the boards for the drift chambers are manufactured in the amount to equip one 8-plane module. The paper presents the functional description of the whole DAQ system and its main parts together with some of the test results as an illustration of the excellent performance of the system. The appendix contains specific information which may be useful for the system users or code developers.
The MEG experiment at the Paul Scherrer Institut searches for the charged-Lepton-Flavor-Violating mu+ -> e+ gamma decay. MEG has already set the world best upper limit on the branching ratio: BR<4.2x10^-13 @ 90% C.l. An upgrade (MEG II) of the whole detector has been approved to obtain a substantial increase of sensitivity. Currently MEG II is completing the upgrade of the various detectors, an engineering run and a pre-commissioning run were carried out during 2018 and 2019. The new positron tracker is a unique volume, ultra-light He based cylindrical drift chamber (CDCH), with high granularity: 9 layers of 192 square drift cells, ~6-9 mm wide, consist of ~12000 wires in a full stereo configuration. To ensure the electrostatic stability of the drift cells a new wiring strategy should be developed due to the high wire density (12 wires/cm^2 ), the stringent precision requirements on the wire position and uniformity of the wire mechanical tension (better than 0.5 g) The basic idea is to create multiwire frames, by soldering a set of (16 or 32) wires on 40 um thick custom wire-PCBs. Multiwire frames and PEEK spacers are overlapped alternately along the radius, to set the proper cell width, in each of the twelve sectors defined by the spokes of the rudder wheel shaped end-plates. Despite to the conceptual simplicity of the assembling strategies, the building of the multiwire frames, with the set requirements, imposes a use of an automatic wiring system. The MEG II CDCH is the first cylindrical drift chamber ever designed and built in a modular way and it will allow to track positrons, with a momentum greater than 45 MeV/c, with high efficiency by using a very small amount of material, 1.5x10^-3 X0 . We describe the CDCH design and construction, the wiring phase at INFN-Lecce, the choice of the wires, their mechanical properties, the assembly and sealing at INFN-Pisa and the commissioning.
This article presents the MEG II Cylindrical Drift CHamber (CDCH), a key detector for the phase 2 of MEG, which aims at reaching a sensitivity level of the order of $6 times 10^{-14}$ for the charged Lepton Flavour Violating $mu^+ rightarrow mbox{e}^+ gamma$ decay. CDCH is designed to overcome the limitations of the MEG $mbox{e}^+$ tracker and guarantee the proper operation at high rates with long-term detector stability. CDCH is a low-mass unique volume detector with high granularity: 9 layers of 192 drift cells, few mm wide, defined by $approx 12000$ wires in a stereo configuration for longitudinal hit localization. The total radiation length is $1.5 times 10^{-3}$ $mbox{X}_0$, thus minimizing the Multiple Coulomb Scattering (MCS) contribution and allowing for a single-hit resolution of 110 $mu$m and a momentum resolution of 130 keV/c. CDCH integration into the MEG II experimental apparatus will start in this year.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا