No Arabic abstract
Selected topics on precision tests of the Standard Model of the Electroweak and the Strong Interaction at the LEP $e^+e^-$ collider are presented, including an update of the world summary of measurements of $alpha_s$, representing the state of knowledge of summer 1999. This write-up of lecture notes consists of a reproduction of slides, pictures and tables, supplemented by a short descriptive text and a list of relevant references.
Recent results on jet physics and tests of QCD from hadronic final states in $e^+e^-$ annihilation at PETRA and at LEP are reviewed, with special emphasis on hadronic event shapes, charged particle production rates, properties of quark and gluon jets and determinations of $alpha_s$. The data in the entire energy range from PETRA to LEP-2 are in broad agreement with the QCD predictions. The world summary of measurements of $alpha_s$ is updated and a detailed discussion of various methods to determine the overall error of $alpha_s (M_Z)$ is presented. The new world average is $alpha_s (M_Z) = 0.119 pm 0.004$. The size of the error depends on the treatment of correlated uncertainties.
The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERNs accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond the Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.
The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNEs sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.
All experimental measurements of particle physics today are beautifully described by the Standard Model. However, there are good reasons to believe that new physics may be just around the corner at the TeV energy scale. This energy range is currently probed by the Tevatron and HERA accelerators and selected results of searches for physics beyond the Standard Model are presented here. No signals for new physics have been found and limits are placed on the allowed parameter space for a variety of different particles.