No Arabic abstract
We consider the problem of the symmetry of the off-diagonal heat-kernel coefficients as well as the coefficients corresponding to the short-distance-divergent part of the Hadamard expansion in general smooth (analytic or not) manifolds. The requirement of such a symmetry played a central r^{o}le in the theory of the point-splitting one-loop renormalization of the stress tensor in either Riemannian or Lorentzian manifolds. Actually, the symmetry of these coefficients has been assumed as a hypothesis in several papers concerning these issues without an explicit proof. The difficulty of a direct proof is related to the fact that the considered off-diagonal heat-kernel expansion, also in the Riemannian case, in principle, may be not a proper asymptotic expansion. On the other hand, direct computations of the off-diagonal heat-kernel coefficients are impossibly difficult in nontrivial cases and thus no case is known in the literature where the symmetry does not hold. By approximating $C^infty$ metrics with analytic metrics in common (totally normal) geodesically convex neighborhoods, it is rigorously proven that, in general $C^infty$ Riemannian manifolds, any point admits a geodesically convex neighborhood where the off-diagonal heat-kernel coefficients, as well as the relevant Hadamards expansion coefficients, are symmetric functions of the two arguments.
Completing the results obtained in a previous paper, we prove the symmetry of Hadamard/Seeley-deWitt off-diagonal coefficients in smooth $D$-dimensional Lorentzian manifolds. To this end, it is shown that, in any Lorentzian manifold, a sort of ``local Wick rotation of the metric can be performed provided the metric is a locally analytic function of the coordinates and the coordinates are ``physical. No time-like Killing field is necessary. Such a local Wick rotation analytically continues the Lorentzian metric in a neighborhood of any point, or, more generally, in a neighborhood of a space-like (Cauchy) hypersurface, into a Riemannian metric. The continuation locally preserves geodesically convex neighborhoods. In order to make rigorous the procedure, the concept of a complex pseudo-Riemannian (not Hermitian or Kahlerian) manifold is introduced and some features are analyzed. Using these tools, the symmetry of Hadamard/Seeley-deWitt off-diagonal coefficients is proven in Lorentzian analytical manifolds by analytical continuation of the (symmetric) Riemannian heat-kernel coefficients. This continuation is performed in geodesically convex neighborhoods in common with both the metrics. Then, the symmetry is generalized to $C^infty$ non analytic Lorentzian manifolds by approximating Lorentzian $C^{infty}$ metrics by analytic metrics in common geodesically convex neighborhoods. The symmetry requirement plays a central r^{o}le in the point-splitting renormalization procedure of the one-loop stress-energy tensor in curved spacetimes for Hadamard quantum states.
Covariant perturbation expansion is an important method in quantum field theory. In this paper an expansion up to arbitrary order for off-diagonal heat kernels in flat space based on the covariant perturbation expansion is given. In literature, only diagonal heat kernels are calculated based on the covariant perturbation expansion.
We consider different methods of calculating the (fractional) fermion number of solitons based on the heat kernel expansion. We derive a formula for the localized eta function a more systematic version of the derivative expansion for spectral assymmetry and that provides a more systematic version of the derivative expansion for spectral asymmetry and compute the fermion number in a multiflavour extension of the Goldstone-Wilczek model.We also propose an improved expansionof the heat kernelthat allows the tackling ofthe convergence issues and permits an automated computation of the coefficients
We revisit the manifestly covariant large $c$ expansion of General Relativity, $c$ being the speed of light. Assuming the relativistic connection has no pole in $c^{-2}$, this expansion is known to reproduce Newton-Cartan gravity and a covariant version of Post-Newtonian corrections to it. We show that relaxing this assumption leads to the inclusion of twistless torsion in the effective non-relativistic theory. We argue that the resulting TTNC theory is an effective description of a non-relativistic regime of General Relativity that extends Newtonian physics by including strong gravitational time dilation.
In this paper we consider spherically symmetric general fluids with heat flux, motivated by causal thermodynamics, and give the appropriate set of conditions that define separating shells defining the divide between expansion and collapse. To do so we add the new requirement that heat flux and its evolution vanish at the separating surface. We extend previous works with a fully nonlinear analysis in the 1+3 splitting, and present gauge-invariant results. The definition of the separating surface is inspired by the conservation of the Misner-Sharp mass, and is obtained by generalizing the Tolman-Oppenheimer-Volkoff equilibrium and turnaround conditions. We emphasize the nonlocal character of these conditions as found in previous works and discuss connections to the phenomena of spacetime cracking and thermal peeling.