Do you want to publish a course? Click here

Chaos in Quantum Cosmology

73   0   0.0 ( 0 )
 Added by Neil John Cornish
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Much of the foundational work on quantum cosmology employs a simple minisuperspace model describing a Friedmann-Robertson-Walker universe containing a massive scalar field. We show that the classical limit of this model exhibits deterministic chaos and explore some of the consequences for the quantum theory. In particular, the breakdown of the WKB approximation calls into question many of the standard results in quantum cosmology.



rate research

Read More

The chaotic behavior in FRW cosmology with a scalar field is studied for scalar field potentials less steep than quadratic. We describe a transition to much stronger chaos for appropriate parameters of such potentials. The range of parameters which allows this transition is specified. The influence of ordinary matter on the chaotic properties of this model is also discussed.
83 - James B. Hartle 2021
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical interest. The material on the Born-Oppenheimer approximation for solving the Wheeler-DeWitt equation and the work on the classical geometry limit and the approximation of quantum field theory in curved spacetime are still of interest and of use.
Contents: Introduction. The Present State of the Universe. What Can We Expect From a Complete Cosmological Theory? An Overview of Quantum Effects in Cosmology. Parametric (Superadiabatic) Amplification of Classical Waves. Graviton Creation in the Inflationary Universe. Quantum States of a Harmonic Oscillator. Squeezed Quantum States of Relic Gravitons and Primordial Density Perturbations. Quantum Cosmology, Minisuperspace Models and Inflation. From the Space of Classical Solutions to the Space of Wave Functions. On the Probability of Quantum Tunneling From Nothing. Duration of Inflation
95 - A.V.Toporensky 2000
The results on chaos in FRW cosmology with a massive scalar field are extended to another scalar field potential. It is shown that for sufficiently steep potentials the chaos disappears. A simple and rather accurate analytical criterion for the chaos to disappear is given. On the contrary, for gently sloping potentials the transition to a strong chaotic regime can occur. Two examples, concerning asymptotically flat and Damour-Mukhanov potentials are given.
We study oscillatory universes within the context of Loop Quantum Cosmology. We make a comparative study of flat and positively curved universes sourced by scalar fields with either positive or negative potentials. We investigate how oscillating universes can set the initial conditions for successful slow-roll inflation, while ensuring that the semi-classical bounds are satisfied. We observe rich oscillatory dynamics with negative potentials, although it is difficult to respect the semi-classical bounds in models of this type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا