Contents: Introduction. The Present State of the Universe. What Can We Expect From a Complete Cosmological Theory? An Overview of Quantum Effects in Cosmology. Parametric (Superadiabatic) Amplification of Classical Waves. Graviton Creation in the Inflationary Universe. Quantum States of a Harmonic Oscillator. Squeezed Quantum States of Relic Gravitons and Primordial Density Perturbations. Quantum Cosmology, Minisuperspace Models and Inflation. From the Space of Classical Solutions to the Space of Wave Functions. On the Probability of Quantum Tunneling From Nothing. Duration of Inflation
We derive the primordial power spectra and spectral indexes of the density fluctuations and gravitational waves in the framework of loop quantum cosmology (LQC) with holonomy and inverse-volume corrections, by using the uniform asymptotic approximation method to its third-order, at which the upper error bounds are $lesssim 0.15%$, and accurate enough for the current and forthcoming cosmological observations. Then, using the Planck, BAO and SN data we obtain the tightest constraints on quantum gravitational effects from LQC corrections, and find that such effects could be well within the detection of the current and forthcoming cosmological observations.
In this Essay we investigate the observational signatures of Loop Quantum Cosmology (LQC) in the CMB data. First, we concentrate on the dynamics of LQC and we provide the basic cosmological functions. We then obtain the power spectrum of scalar and tensor perturbations in order to study the performance of LQC against the latest CMB data. We find that LQC provides a robust prediction for the main slow-roll parameters, like the scalar spectral index and the tensor-to-scalar fluctuation ratio, which are in excellent agreement within $1sigma$ with the values recently measured by the Planck collaboration. This result indicates that LQC can be seen as an alternative scenario with respect to that of standard inflation.
Lectures by the author at the 1986 Cargese summer school modestly corrected and uploaded for greater accessibility. Some of the authors views on the quantum mechanics of cosmology have changed from those presented here but may still be of historical interest. The material on the Born-Oppenheimer approximation for solving the Wheeler-DeWitt equation and the work on the classical geometry limit and the approximation of quantum field theory in curved spacetime are still of interest and of use.
Much of the foundational work on quantum cosmology employs a simple minisuperspace model describing a Friedmann-Robertson-Walker universe containing a massive scalar field. We show that the classical limit of this model exhibits deterministic chaos and explore some of the consequences for the quantum theory. In particular, the breakdown of the WKB approximation calls into question many of the standard results in quantum cosmology.
In this thesis, we discuss several instances in which non-linear behaviour affects cosmological evolution in the early Universe. We begin by reviewing the standard cosmological model and the tools used to understand it theoretically and to compute its observational consequences. This includes a detailed exposition of cosmological perturbation theory and the theory of inflation. We then describe the results in this thesis, starting with the non-linear evolution of the curvature perturbation in the presence of vector and tensor fluctuations, in which we identify the version of that variable that is conserved in the most general situation. Next, we use second order perturbation theory to describe the most general initial conditions for the evolution of scalar perturbations at second order in the standard cosmological model. We compute approximate solutions valid in the initial stages of the evolution, which can be used to initialize second order Boltzmann codes, and to compute many observables taking isocurvature modes into account. We then move on to the study of the inflationary Universe. We start by analysing a new way to compute the consequences of a sudden transition in the evolution of a scalar during inflation. We use the formalism of quantum quenches to compute the effect of those transitions on the spectral index of perturbations. Finally, we detail the results of the exploration of a multi-field model of inflation with a non-minimal coupling to gravity. We study popular attractor models in this regime in both the metric and the Palatini formulations of gravity and find all results for both the power spectrum and bispectrum of fluctuations to closely resemble those of the single-field case. In all systems under study we discuss the effects of non-linear dynamics and their importance for the resolution of problems in cosmology.