Do you want to publish a course? Click here

Gravitational Waves by a Particle in Circular Orbits around a Schwarzschild black hole -5.5 Post-Newtonian Formula-

122   0   0.0 ( 0 )
 Added by Hideyuki Tagoshi
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using the post-Newtonian (PN) expansion technique of the gravitational wave perturbation around a Schwarzschild black hole, we calculate analytically the energy flux of gravitational waves induced by a particle in circular orbits up to the 5.5PN order, i.e. $O(v^{11})$ beyond Newtonian. By comparing the formula with numerical data, we find that the error of the 5.5PN formula is about 4% when the particle is on the last stable circular orbit. We also estimate the error $Delta N$ in the total cycle of gravitational waves from coalescing compact binaries in a laser interferometers band produced by using the post-Newtonian approximations. We find that, as for the neutron star-black hole binaries, the 4.5PN approximation gives $Delta Nalt1$ for a black hole of mass $M<40M_odot$, while it gives $Delta Nagt1$ for a black hole of mass $M>40M_{odot}$.



rate research

Read More

We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravitational self-force (GSF) effect, including conservative corrections. The GSF information is encapsulated in an analytic interpolation formula based on numerical GSF data for over a thousand sample geodesic orbits. We assess the importance of including conservative GSF corrections in waveform models for gravitational-wave searches.
We investigate analytically and numerically the orbits of spinning particles around black holes in the post Newtonian limit and in the presence of cosmic expansion. We show that orbits that are circular in the absence of spin, get deformed when the orbiting particle has spin. We show that the origin of this deformation is twofold: a. the background expansion rate which induces an attractive (repulsive) interaction due to the cosmic background fluid when the expansion is decelerating (accelerating) and b. a spin-orbit interaction which can be attractive or repulsive depending on the relative orientation between spin and orbital angular momentum and on the expansion rate.
We present general relativistic hydrodynamics simulations of constant specific angular momentum tori orbiting a Schwarzschild black hole. These tori are expected to form as a result of stellar gravitational collapse, binary neutron star merger or disruption, can reach very high rest-mass densities and behave effectively as neutron stars but with a toroidal topology (i.e. ``toroidal neutron stars). Our attention is here focussed on the dynamical response of these objects to axisymmetric perturbations. We show that, upon the introduction of perturbations, these systems either become unstable to the runaway instability or exhibit a regular oscillatory behaviour resulting in a quasi-periodic variation of the accretion rate as well as of the mass quadrupole. The latter, in particular, is responsible for the emission of intense gravitational radiation whose signal-to-noise ratio at the detector is comparable or larger than the typical one expected in stellar-core collapse, making these new sources of gravitational waves potentially detectable. We discuss a systematic investigation of the parameter space both in the linear and nonlinear regimes, providing estimates of how the gravitational radiation emitted depends on the mass of the torus and on the strength of the perturbation.
We present a method for solving the first-order field equations in a post-Newtonian (PN) expansion. Our calculations generalize work of Bini and Damour and subsequently Kavanagh et al., to consider eccentric orbits on a Schwarzschild background. We derive expressions for the retarded metric perturbation at the location of the particle for all $ell$-modes. We find that, despite first appearances, the Regge-Wheeler gauge metric perturbation is $C^0$ at the particle for all $ell$. As a first use of our solutions, we compute the gauge-invariant quantity $langle U rangle$ through 4PN while simultaneously expanding in eccentricity through $e^{10}$. By anticipating the $eto 1$ singular behavior at each PN order, we greatly improve the accuracy of our results for large $e$. We use $langle U rangle$ to find 4PN contributions to the effective one body potential $hat Q$ through $e^{10}$ and at linear order in the mass-ratio.
[abridged] The inspiral of a stellar compact object into a massive black hole is one of the main sources of gravitational waves for the future space-based Laser Interferometer Space Antenna. We expect to be able to detect and analyze many cycles of these slowly inspiraling systems. To that end, the use of very precise theoretical waveform templates in the data analysis is required. To build them we need to have a deep understanding of the gravitational backreaction mechanism responsible for the inspiral. The self-force approach describes the inspiral as the action of a local force that can be obtained from the regularization of the perturbations created by the stellar compact object on the massive black hole geometry. In this paper we extend a new time-domain technique for the computation of the self-force from the circular case to the case of eccentric orbits around a non-rotating black hole. The main idea behind our scheme is to use a multidomain framework in which the small compact object, described as a particle, is located at the interface between two subdomains. Then, the equations at each subdomain are homogeneous wave-type equations, without distributional sources. In this particle-without-particle formulation, the solution of the equations is smooth enough to provide good convergence properties for the numerical computations. This formulation is implemented by using a pseudospectral collocation method for the spatial discretization, combined with a Runge Kutta algorithm for the time evolution. We present results from several simulations of eccentric orbits in the case of a scalar charged particle around a Schwarzschild black hole. In particular, we show the convergence of the method and its ability to resolve the field and its derivatives across the particle location. Finally, we provide numerical values of the self-force for different orbital parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا