Do you want to publish a course? Click here

Black Hole with Non-Commutative Hair

95   0   0.0 ( 0 )
 Added by Pavol Kolnik
 Publication date 1993
  fields Physics
and research's language is English




Ask ChatGPT about the research

The specific nonlinear vector $sigma$-model coupled to Einstein gravity is investigated. The model arises in the studies of the gravitating matter in non-commutative geometry. The static spherically symmetric spacetimes are identified by direct solving of the field equations. The asymptotically flat black hole with the ``non-commutative vector hair appears for the special choice of the integration constants, giving thus another counterexample to the famous ``no-hair theorem.



rate research

Read More

185 - B. Harms , A. Stern 2017
We show that the nonlinear $sigma-$model in an asymptotically $AdS_3$ space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear $sigma-$model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear $sigma-$model fields and changes the space-time metric, and it can be used to map an extremal $BTZ$ black hole to infinitely many hairy black hole solutions.
101 - B. Kleihaus 1998
In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black holes, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric.
We revisit the physical effects of discrete $mathbb{Z}_p$ gauge charge on black hole thermodynamics, building on the seminal work of Coleman, Preskill, and Wilczek. Realising the discrete theory from the spontaneous breaking of an Abelian gauge theory, we consider the two limiting cases of interest, depending on whether the Compton wavelength of the massive vector is much smaller or much larger than the size of the black hole -- the so-called thin- and thick-string limits respectively. We find that the qualitative effect of discrete hair on the mass-temperature relationship is the same in both regimes, and similar to that of unbroken $U(1)$ charge: namely, a black hole carrying discrete gauge charge is always colder than its uncharged counterpart. In the thick-string limit, our conclusions bring into question some of the results of Coleman et al., as we discuss. Further, by considering the system to be enclosed within a finite cavity, we argue how the unbroken limit may be smoothly defined, and the unscreened electric field of the standard Reissner-Nordstrom solution recovered.
Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss about the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection.
We construct and analyse Kerr black holes (BHs) with synchronised axionic hair. These are the BH generalisations of the recently constructed rotating axion boson stars arXiv:2005.05982. Such BHs are stationary, axially symmetric, asymptotically flat solutions of the complex Einstein-Klein-Gordon theory with a QCD axion-like potential. They are regular everywhere on and outside the event horizon. The potential is characterised by two parameters: the mass of the axion-like particle, $m_a$ and the decay constant $f_a$. The limit $f_a rightarrow infty$ recovers the original example of Kerr BHs with synchronised scalar hair arXiv:1403.2757. The effects of the non-linearities in the potential become important for $f_a lesssim 1$. We present an overview of the parameter space of the solutions together with a study of their basic geometric and phenomenological properties, for an illustrative value of the coupling that yields a non-negligible impact of the self-interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا