Do you want to publish a course? Click here

Motion of particles on a Four-Dimensional Asymptotically AdS Black Hole with Scalar Hair

147   0   0.0 ( 0 )
 Added by P. A. Gonzalez
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by black hole solutions with matter fields outside their horizon, we study the effect of these matter fields in the motion of massless and massive particles. We consider as background a four-dimensional asymptotically AdS black hole with scalar hair. The geodesics are studied numerically and we discuss about the differences in the motion of particles between the four-dimensional asymptotically AdS black holes with scalar hair and their no-hair limit, that is, Schwarzschild AdS black holes. Mainly, we found that there are bounded orbits like planetary orbits in this background. However, the periods associated to circular orbits are modified by the presence of the scalar hair. Besides, we found that some classical tests such as perihelion precession, deflection of light and gravitational time delay have the standard value of general relativity plus a correction term coming from the cosmological constant and the scalar hair. Finally, we found a specific value of the parameter associated to the scalar hair, in order to explain the discrepancy between the theory and the observations, for the perihelion precession of Mercury and light deflection.

rate research

Read More

We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the scalar field we solve the Einstein equations and we determine the scalar potential. Thermodynamically we show that there is a critical temperature below which there is a phase transition of a black hole with hyperbolic horizon to the new hairy black hole configuration.
We study spherically symmetric soliton solutions in a model with a conformally coupled scalar field as well as in full conformal gravity. We observe that a new type of limiting behaviour appears for particular choices of the self-coupling of the scalar field, i.e. the solitons interpolate smoothly between the Anti-de Sitter vacuum and an uncharged configuration. Furthermore, within conformal gravity the qualitative approach of a limiting solution does not change when varying the charge of the scalar field - contrary to the Einstein-Hilbert case. However, it changes with the scalar self-coupling.
94 - C. Klimcik , P. Kolnik , 1993
The specific nonlinear vector $sigma$-model coupled to Einstein gravity is investigated. The model arises in the studies of the gravitating matter in non-commutative geometry. The static spherically symmetric spacetimes are identified by direct solving of the field equations. The asymptotically flat black hole with the ``non-commutative vector hair appears for the special choice of the integration constants, giving thus another counterexample to the famous ``no-hair theorem.
In this work we consider black hole solutions to Einstein theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black hols and find that both first and second order phase transitions can occur in the canonical ensemble, while for the grand canonical ensemble the Hawking-Page and second order phase transitions are allowed.
185 - B. Harms , A. Stern 2017
We show that the nonlinear $sigma-$model in an asymptotically $AdS_3$ space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear $sigma-$model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear $sigma-$model fields and changes the space-time metric, and it can be used to map an extremal $BTZ$ black hole to infinitely many hairy black hole solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا