Do you want to publish a course? Click here

Shortcuts to Spherically Symmetric Solutions: A Cautionary Note

85   0   0.0 ( 0 )
 Added by Joel Franklin
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spherically symmetric solutions of generic gravitational models are optimally, and legitimately, obtained by expressing the action in terms of the two surviving metric components. This shortcut is not to be overdone, however: a one-function ansatz invalidates it, as illustrated by the incorrect solutions of [1].



rate research

Read More

319 - S. Deser , O. Sarioglu , B. Tekin 2007
We obtain the static spherically symmetric solutions of a class of gravitational models whose additions to the General Relativity (GR) action forbid Ricci-flat, in particular, Schwarzschild geometries. These theories are selected to maintain the (first) derivative order of the Einstein equations in Schwarzschild gauge. Generically, the solutions exhibit both horizons and a singularity at the origin, except for one model that forbids spherical symmetry altogether. Extensions to arbitrary dimension with a cosmological constant, Maxwell source and Gauss-Bonnet terms are also considered.
We studied spherically symmetric solutions in scalar-torsion gravity theories in which a scalar field is coupled to torsion with a derivative coupling. We obtained the general field equations from which we extracted a decoupled master equation, the solution of which leads to the specification of all other unknown functions. We first obtained an exact solution which represents a new wormhole-like solution dressed with a regular scalar field. Then, we found large distance linearized spherically symmetric solutions in which the space asymptotically is AdS.
We study spherically symmetric spacetimes in Einstein-aether theory in three different coordinate systems, the isotropic, Painlev`e-Gullstrand, and Schwarzschild coordinates, in which the aether is always comoving, and present both time-dependent and time-independent exact vacuum solutions. In particular, in the isotropic coordinates we find a class of exact static solutions characterized by a single parameter $c_{14}$ in closed forms, which satisfies all the current observational constraints of the theory, and reduces to the Schwarzschild vacuum black hole solution in the decoupling limit ($c_{14} = 0$). However, as long as $c_{14} ot= 0$, a marginally trapped throat with a finite non-zero radius always exists, and in one side of it the spacetime is asymptotically flat, while in the other side the spacetime becomes singular within a finite proper distance from the throat, although the geometric area is infinitely large at the singularity. Moreover, the singularity is a strong and spacetime curvature singularity, at which both of the Ricci and Kretschmann scalars become infinitely large.
In this work we investigate analytic static and spherically symmetric solutions of a generalized theory of gravity in the Einstein-Cartan formalism. The main goal consists in analyzing the behavior of the solutions under the influence of a quadratic curvature term in the presence of cosmological constant and no torsion. In the first incursion we found an exact de Sitter-like solution. This solution is obtained by imposing vanishing torsion in the field equations. On the other hand, by imposing vanishing torsion directly in the action, we are able to find a perturbative solution around the Schwarzschild-de Sitter usual solution. We briefly discuss classical singularities for each solution and the event horizons. A primer discussion on the thermodynamics of the geometrical solutions is also addressed.
An algorithm presented by K. Lake to obtain all static spherically symmetric perfect fluid solutions was recently extended by L. Herrera to the interesting case of locally anisotropic fluids (principal stresses unequal). In this work we develop an algorithm to construct all static spherically symmetric anisotropic solutions for general relativistic polytropes. Again the formalism requires the knowledge of only one function (instead of two) to generate all possible solutions. To illustrate the method some known cases are recovered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا