Do you want to publish a course? Click here

Gravitational Waves and GRBs from Tidal Disruption of Stars in the Center of Galaxies

42   0   0.0 ( 0 )
 Added by Pierluigi Fortini
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent measurements of the Chandra satellite have shown that a supermassive black hole of $M = 2.6 times 10^{6} M_{odot}$ is located in the Galactic Center; it seems probable that, from other observations, this fact is common in the majority of galaxies. On the other hand, GRB explosions are typical phenomenon linked to the galactic dynamics. In the present paper we discuss the possibility that GRBs are tidal disruption of stars by supermassive black holes located in the center of galaxies. This conjecture can be tested by a gravitational wave detector of the class of AURIGA.



rate research

Read More

In this paper we show in a covariant and gauge invariant way that in general relativity, tidal forces are actually a hidden form of gravitational waves. This must be so because gravitational effects cannot occur faster than the speed of light. Any two body gravitating system, where the bodies are orbiting around each other, may generate negligible gravitational waves, but it is via these waves that non-negligible tidal forces (causing shape distortions) act on these bodies. Although the tidal forces are caused by the electric part of the Weyl tensor, we transparently show that some small time varying magnetic part of the Weyl tensor with non zero curl must be present in the system that mediates the tidal forces via gravitational wave type effects. The outcome is a new test of whether gravitational effects propagate at the speed of light.
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic Center region, performed on two years of data from LIGOs fifth science run from two LIGO detectors. The search uses a semi-coherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first order spindown values down to -7.86 x 10^-8 Hz/s at the highest frequency. No gravitational waves were detected. We place 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center. Placing 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic Center, we reach ~3.35x10^-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
We estimate the rate of tidal disruption events (TDEs) that will be detectable with future space-based gravitational wave detectors as well as the most probable properties of these events. We find that the Laser Interferometer Space Antenna (LISA) will be able to detect up to few 10 events, but this number will strongly depend on our ability to disentangle the signal from the noise. The future number of (non-)observation will add additional constraints on the typical age of stars surrounding central black holes (BHs), however it will not constrain the unknown regimes of the BH mass function. Most probable events will involve 10 M$_odot$ stars around few $10^6$ M$_odot$ BHs and will be detectable in the X-ray and optical part of the electromagnetic spectrum, which may open the multi-messenger era for TDEs. The generation of detectors following LISA will routinely detect gravitational waves from TDEs at cosmological distances.
Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the short duration search methods, while the long duration search method achieves up to a factor of two higher sensitivity. We find the absence of second derivative frequency in the search parameter space does not degrade search sensivity for signals with physically plausible second derivative frequencies. We also report on the parameter estimation accuracy of each search method, and the stability of the sensitivity in frequency, frequency derivative and in the presence of detector noise.
We report results of a search for continuous gravitational waves from a region covering the globular cluster Terzan 5 and the galactic center. Continuous gravitational waves are expected from fast-spinning, slightly non-axisymmetric isolated neutron stars as well as more exotic objects. The regions that we target are believed to be unusually abundant in neutron stars. We use a new loosely coherent search method that allows to reach unprecedented levels of sensitivity for this type of search. The search covers the frequency band 475-1500 Hz and frequency time derivatives in the range of [-3e-8, +1e-9] Hz/s, which is a parameter range not explored before with the depth reached by this search. As to be expected with only a few months of data from the same observing run, it is very difficult to make a confident detection of a continuous signal over such a large parameter space. A list of parameter space points that passed all the thresholds of this search is provided. We follow-up the most significant outlier on the newly released O2 data and cannot confirm it. We provide upper limits on the gravitational wave strength of signals as a function of signal frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا